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Abstract: Current methods for monitoring neuromuscular fatigue typically assess intramuscular1

changes occurring in individual muscles using surface electromyography (sEMG). However, they2

do not consider how the complex relationship between activity from multiple muscles and their3

generated force evolves over time due to fatigue. This paper investigates the viability of a4

system-based monitoring paradigm for assessing fatigue. Eight participants performed a static elbow5

extension task until exhaustion while sEMG and force data were recorded. A dynamic time-series6

model mapped instantaneous features extracted from sEMG signals of multiple synergistic muscles7

to their force output. Time-dependent changes in the model were quantified via statistical analysis8

of modeling errors to produce a metric indicative of performance degradation, called the Freshness9

Similarity Index (FSI). The FSI revealed strong, significant within-individual associations with two10

well-accepted measures of fatigue: maximum voluntary contraction (MVC) force (rrm = −0.86)11

and ratings of perceived exertion (RPE) (rrm = 0.87). These findings substantiate the viability of12

a system-based monitoring paradigm for assessing fatigue. Modifications made to the paradigm13

to facilitate online fatigue assessment are also discussed. These results provide the first direct and14

quantitative link between a system-based approach to monitoring performance degradation and15

traditional measures of fatigue.16

Keywords: human fatigue monitoring, neuromuscular fatigue, surface electromyography17

time-frequency signal analysis, time-series modeling, autoregressive moving average model with18

exogenous inputs, isometric contraction, elbow extension19

1. Introduction20

1.1. Background21

Fatigue is commonly defined as "any exercise-induced reduction in the ability of a muscle to22

generate force or power" [1]. It is a complex accumulation of psychological and physiological processes23

that impair muscle function and diminish the capacity of the central nervous system to activate muscles24

[1–3]. Neuromuscular fatigue presents a major obstacle for achieving desired performance in a variety25

of circumstances. For healthy individuals in physically demanding professions, (e.g., astronauts,26

soldiers, athletes, etc.), prolonged periods of training and operations are known to adversely affect27

task efficiency [4], movement accuracy [5], and performance [4], while also increasing susceptibility to28

overuse injuries [4]. For patients with neurological or cerebrovascular diseases, such as stroke, multiple29

sclerosis, and Parkinson’s disease, fatigue is also a typical and potentially debilitating symptom [6,7].30

Thus, assessing fatigue has important implications for preventing neuromuscular injury [8], optimizing31

training loads [9], and guiding effective, individualized treatment strategies for rehabilitation [7].32
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In a clinical setting, standard methods for assessing fatigue rely upon self-reported questionnaires33

or rating scales [1,10] that capture how an individual experiences fatigue. Mental fatigue can be34

experienced as an increase in the perceived effort to complete a task [11] or a reduction in motivation35

and concentration [1]. Ratings of perceived exertion (RPE) [12–14] are used to study mental fatigue36

in both healthy and affected populations. A higher perception of effort is known to limit exercise37

tolerance [13] and adversely affect physical performance during endurance tasks [11,14]. Although38

subjective rating scales contain valuable information, they are indirect measures of fatigue that provide39

qualitative information with low-resolution [10]. Moreover, self-perceived fatigue is not always40

accompanied by a loss of force-producing capacity [6,11,14] or changes in physiological variables [13,41

14], especially during endurance tasks.42

A decline in maximum voluntary contraction (MVC) force has become a "gold standard" [15]43

indicator for confirming the occurrence of fatigue in the physiological sciences [1,14,15] because it can44

directly quantify a loss in force-generating capacity. Despite their value as objective assessment tools,45

MVC force measures are often taken immediately before and after a bout of exercise and only capture46

the overall mechanical manifestation of fatigue. Consequently, they lack valuable insight regarding47

the progression of fatigue during the task itself, including the underlying physiological processes that48

contribute to the degraded performance of the neuromuscular system. Neuromuscular fatigue can be49

identified by measuring the evoked force from twitch responses after electrically stimulating muscles50

during maximal or submaximal voluntary contractions [16]. However, this technique is also applied51

before and after a fatiguing exercise.52

Surface electromyography (sEMG) has been widely used to address this issue by enabling the53

continuous measurement of muscle activity during exercise. Since fatigue begins to accumulate at54

the start of a muscle contraction and continuously evolves over the course of exercise [17], changes55

in the sEMG signal can reveal indications of localized muscle fatigue long before a decline in force56

or power output occurs [1,2,18]. For instance, during sustained contractions at submaximal force57

levels, a progressive increase in sEMG amplitude and compression of the sEMG signal spectrum can58

be detected [2,17,18]. Fourier-based spectral features extracted from the sEMG signal, such as the59

mean or median frequency, are the most widely used indices of localized muscle fatigue and have60

been employed in numerous applications [2,18,19].61

Extensive work has gone into developing more advanced spectral estimation and signal processing62

techniques that can accommodate the non-stationary behavior in sEMG signals [20,21]. The majority of63

these efforts, which are thoroughly discussed elsewhere [21–24], were devoted to developing fatigue64

assessment metrics that reflect the localized manifestations of fatigue within a muscle. Thus, these65

metrics are often univariate, monitored independently for each muscle, and analyzed separately from66

associated changes in joint movement. Less attention has been paid to developing multivariate metrics67

that utilize more information from the sEMG signal, aggregate activity from all contributing muscles,68

and establish a relationship with kinematic or kinetic movement variables. Such metrics would be69

beneficial for assessing how the neuromuscular system fatigues as a whole during exercise.70

1.2. Related Literature71

Model-based methods that relate sEMG parameters to movement variables have shown success72

in producing a single, unified metric for monitoring fatigue, overcoming some of the aforementioned73

issues. Previous studies have applied linear regressions [23], artificial neural networks [23,25,26],74

linear projection methods [27], and correlations [28] to map net changes in sEMG parameters to overall75

reductions in power [23] or force [28]. Although promising, these approaches do not continuously76

monitor changes in the dynamic relationship between sEMG and movement output over time – a77

relationship that is significantly altered in the presence of fatigue [29]. They also require i) a priori78

assumptions about the linearity of fatigue progression [23,25,26], ii) extensive data sets containing the79

entire time-course of fatigue to train models [23,25–28], and iii) reference contractions to probe for80

fatigue-induced changes in parameters at the beginning and end of an endurance task [28].81
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Recent studies have approached human performance monitoring using a system-based82

monitoring paradigm, which is relatively well known in the machine monitoring community [30]. The83

system-based approach monitors how the performance of the human neuromusculoskeletal (NMS)84

degrades during prolonged exercise by continuously tracking changes in the dynamic relationship85

between sEMG and movement output over time. Musselman et al. were the first to pursue this86

direction [31]. The dynamic relationship was described using vectorial autoregressive models with87

exogenous inputs (vARX), which took instantaneous intensity and frequency features from upper-arm88

sEMG signals as inputs and related them to joint angular velocities as model outputs. The methodology89

was tested on data from participants performing a repetitive sawing movement until voluntary90

exhaustion. Xie and Djurdjanovic [32], Madden et al. [33], and Yang et al. [34] modified this work91

by instead using autoregressive moving average models with exogenous inputs (ARMAX) with92

second-order muscle dynamics to describe the NMS system during both constant force and repetitive93

movement tasks. Two additional sEMG features, namely instantaneous variance and entropy, were94

incorporated as model inputs with either force [32,32,33], joint velocity [32], or limb displacement [33]95

serving as outputs, depending on the task.96

The models in all four studies [31–34] were trained with data from the initial portion of the task,97

before fatigue onset, to capture the system dynamics during a normal, unfatigued state. Progressive98

changes in system behavior were evaluated by tracking the divergence of model prediction error99

distributions between the unfatigued state and subsequent periods of time. Statistically significant100

trends in a divergence measure, referred to as either the freshness similarity index (FSI) [32,33], fatigue101

index [34], or global freshness index [31], provided evidence that performance degradation occurred102

during the exercises. This system-based methodology overcomes the limitations imposed by the103

previously mentioned model-based approaches [23,25,26,28].104

Although the system-based monitoring strategy provides important advancements to monitoring105

fatigue-related changes in musculoskeletal performance, a formal association between the index of106

performance degradation and fatigue has not yet been established in any of the previous works [31–34].107

Though these studies verified their findings using trends in sEMG features to reveal indications108

of localized muscle fatigue, it is unclear how the system-based performance degradation metric109

proposed in these works relates to well-established measures of fatigue that quantify a net reduction in110

force-producing capacity [1,15] and perceived exertion [12]. This is important because sEMG features111

reflect localized intramuscular adaptations, rather than a global reduction in force-generating capacity,112

whereas the indices in [31–34] are constructed as global measures of how the performance of the113

entire NMS system changes over time. Furthermore, modifications can be made to the system-based114

paradigm used in these works to produce sEMG features that are more representative of neural115

activation signals to the NMS system, provide a complete representation of the NMS system by116

incorporating all contributing muscles, and facilitate online performance assessment.117

To this end, the primary aim of this work is to firmly establish the viability of the system-based118

monitoring paradigm for assessing fatigue by relating the performance degradation index to119

well-accepted measures of fatigue that capture changes in force-generating capacity (MVC force)120

and self-perceived fatigue (RPE). We present a methodology, modified from previous works, to121

generate a sensitive and succinct index of performance degradation (FSI) occurring across multiple122

muscles and sensor sources during a submaximal static exercise. We then substantiate its viability123

for assessing fatigue by evaluating within-individual associations between the FSI and measures124

of MVC force and RPE. We discuss the improvements made to the paradigm to facilitate its use125

as an online assessment tool and more accurately represent changes occurring in the NMS. The126

results of this work have promising implications for informing new methods of monitoring fatigue.127

Tracking fatigue-related changes in performance may lead to more personalized training regimens128

and therapeutic modalities for rehabilitation. Interventions involving robotic exoskeletons present129

an especially promising application of the system-based monitoring paradigm because these devices130
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possess high-resolution sensors that can collect physiological, dynamic, and/or kinematic measures in131

real-time.132

2. Materials and Methods133

2.1. Participants134

Eight healthy right-handed men (26.6 ± 6.1 yr, 76.2 ± 12.4 kg, 178.9 ± 6.6 cm) with no known135

neurological disorders were recruited from the university population to participate in the study. All136

participants were fully informed of any risks associated with the experiments before giving their137

informed written consent to participate in the investigation. The study was conducted in accordance138

with the Declaration of Helsinki [35], and the experimental procedure was approved by the Internal139

Review Board organized by the Office of Research Support at The University of Texas at Austin under140

the protocol number 2013-05-0126.141

2.2. Experimental Setup142

Participants were seated in a high-back chair with a five-point harness that restrained their waist143

and shoulders (Figure 1). A single-degree-of-freedom exoskeleton testbed was grounded to the base of144

the chair and used for testing. The device consists of an upper arm linkage, capstan drive elbow joint,145

and lower arm linkage with a wrist cuff. The chair and linkage lengths were adjusted to accommodate146

each participant. The participant’s upper arm was positioned at shoulder height (90◦ of flexion) with147

45◦ of horizontal abduction. The medial epicondyle of the participants’ humerus was aligned with148

the exoskeleton elbow joint axis and the forearm was placed in a neutral position. The elbow joint149

was positioned at a 90◦ angle. A mechanical structure was used to ground the lower arm linkage of150

the exoskeleton to the base of the chair. This prevented the elbow joint from rotating and constrained151

the participants’ elbow angle to 90◦ to facilitate the isometric contractions described in Section 2.3.152

For this reason, the robot actuator remained unpowered during experimentation. The location of the153

wrist cuff on the exoskeleton linkage was adjusted for each participant so that it was securely attached154

to the forearm just below the ulnar styloid process. A multi-axis force/torque sensor mounted to a155

linear sliding joint was housed between the wrist cuff and exoskeleton linkage and used to measure156

the participants’ elbow extension force. The linear slider allowed for passive travel in the direction157

parallel to the ulna bone to minimize off-axis forces due to robot-human misalignment [36].158

2.3. Experimental Protocol159

Experiments were carried out in the ReNeu Robotics Laboratory at the University of Texas at160

Austin. All participants performed the same experiment on two days separated by 72 hours of161

rest [37,38] in a temperature-controlled room set to 70◦. Both sessions were performed at the same162

time of day and followed the same general protocol, which consisted of three elbow extension tasks: 1)163

baseline maximum voluntary contractions (MVCs) 2) a constant-force endurance task sustained at 30%164

MVC until exhaustion, and 3) a follow-up MVC. Only results from the first session are reported in this165

paper. Participants were instructed to refrain from consuming caffeine on the day of testing [39] and166

exercising 24 hours before the experiment.167

Before testing, the participants performed isometric contractions for elbow extension, elbow168

flexion, shoulder flexion, shoulder abduction, and shoulder extension where they were asked to169

maximally and submaximally exert force. During testing, participants were provided with real-time170

visual feedback of their elbow extension force, in the form of a gauge display, on a computer monitor171

placed at eye-level. For the MVCs, participants were instructed to gradually increase force output from172

zero to maximum over a 3 s period and maintain maximal force for an additional 2-3 s. Participants173

were verbally encouraged to reach their maximal force. At baseline, a minimum of three MVCs174

separated by one minute of rest were performed. If peak forces from two of the three MVCs were not175

within 5%, additional trials were performed until this criterion was met. The trial consisting of the176
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highest value was retained and considered the MVC force. Participants then rested for at least eight177

minutes to minimize residual fatigue from the MVC tasks.178

Before the endurance task, each participant was familiarized with their MVC levels by performing179

brief elbow extension contractions at various force levels (i.e., 30% and 60% MVC). For the endurance180

task, participants performed a sustained, isometric contraction at 30% MVC until their force fell below181

10-15% of the target value [39,40]. In related works examining fatigue, the MVC thresholds of the182

isometric contractions vary between 25-35% [28,39–41]. The contraction level for evaluation was chosen183

to be 30% MVC for this study, as it is the average between these ranges. The target force (30% MVC)184

and the participant’s actual extension force were displayed on the computer monitor. Participants185

matched and tracked the target line for as long as possible and were verbally encouraged to maintain186

a steady force output. Every 30 s, participants reported a rating of perceived exertion (RPE) using187

the Borg CR-10 scale [12]. These ratings ranged from 0 (‘no exertion at all’) to 10 (‘maximal exertion’).188

Immediately after the endurance task ended, participants reported a final RPE and performed a189

follow-up MVC to determine the reduction in MVC force associated with the task.190

Figure 1. Experimental setup. (Left) Exoskeleton testbed. (Right) sEMG sensor placement: (1) long, (2)
lateral, and (3) medial heads of the triceps brachii, and (4) anconeus muscles.

2.4. Data Acquisition191

A Delsys Trigno Wireless EMG system (Delsys Inc., Boston, MA) was used to collect sEMG activity192

from the triceps brachii (long, lateral, and medial heads), anconeus, biceps brachii, brachioradialis,193

and deltoid (anterior, middle, and posterior) muscles. The scope of this paper requires analysis of only194

the muscles that extend the elbow, i.e., the triceps brachii and anconeus (Figure 1). Participants’ body195

hair was shaved, and skin lightly abraded with a pumice stone then cleansed with isopropyl alcohol to196

ensure good skin-to-electrode contact before sEMG sensor placement. Electrodes were positioned over197

each muscle according to European recommendations for Surface Electromyography for Non-Invasive198

Assessment of Muscles (SENIAM) [42]. Elbow extension forces were measured with a multi-axis199

force/torque sensor (ATI, Nano25). An xPC Target (Mathworks, MATLAB module) running Simulink200

Real-Time and hosting NI data acquisition (NI DAQ) boards (National Instruments, Inc., Austin, TX)201

synchronously recorded all data at 1 kHz.202
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2.5. Data Processing203

Raw sEMG signals were bandpass filtered from 10 to 400 Hz [43,44] using a 4th order Butterworth204

filter (zero-lag, non-causal) [45], then demeaned [46] to remove the DC offset. Data from the205

force/torque sensor was low-pass filtered using a 4th order Butterworth filter (zero-lag, non-causal)206

with a 6 Hz cutoff frequency. The processed sEMG and force measures are used in Sections 2.6.1 and207

2.6.2.208

2.6. System-Based Monitoring209

Figure 2. System-based monitoring workflow. Features are extracted from the surface
electromyography (sEMG) signals of each muscle. The sEMG features and elbow extension force
are then normalized and used as the inputs (ui(t)) and output (y(t)) to a dynamic time-series model.
Training data from the start of the endurance task (t0) is used to identify the polynomial coefficients
(A(q), Bi(q), C(q)) of the "Fresh Model" and calculate a reference distribution (P) of one-step ahead
prediction errors. The remaining endurance task data (t1,...,end) is incrementally introduced to the tuned
"Fresh Model" for which updated prediction error distributions (QT) are calculated at each time step, T.
The overlap between P and QT is evaluated to obtain a time-series of freshness similarity index (FSI)
values that quantify performance degradation.

2.6.1. sEMG Feature Extraction210

The first step in the system-based monitoring workflow (Figure 2) involves extracting features211

from the filtered sEMG signals [47] that capture how the signal energy changes in both the time212

and frequency domains. Cohen’s class of time-frequency distributions (TFD) was used to obtain a213

two-dimensional probability density function, C(t, ω), describing the joint distribution of energy of214

the sEMG signal, s(t), over time, t, and frequency, ω, where215

C(t, ω) =
1

4π2 ·
+∞∫∫∫
−∞

s∗(u− 1
2

τ)s(u +
1
2

τ)φ(θ, τ)e−j(θ(t−u)+τω)dτdudθ (1)

with s∗(t) signifying the complex conjugate of s(t) and φ(θ, τ) denoting the so-called TFD kernel.216

The binomial kernel, a signal independent member of the reduced interference distribution family of217

kernels, was used for this analysis due to its desirable mathematical properties [31].218

Calculation of the zero- and first-order moments (i.e., < f 0|t > and < f 1|t >) of C(t, ω) provide219

the instantaneous energy and instantaneous mean frequency of the sEMG signal, respectively, with220
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< f 0|t > =
∫ +∞

−∞
C(t, ω)dω = |ai(t)|2 (2)

< f 1|t > =
∫ +∞

−∞

C(t, ω)

< f 0|t >ωdω = fim(t) (3)

where ai(t) is the instantaneous amplitude, which is a parameter that is approximately equal221

to the RMS amplitude of the sEMG signal [48,49]. The instantaneous mean frequency, labeled as222

fim(t), and instantaneous amplitude, ai(t), are widely used as myoelectric indicators fatigue. As a223

result, significant decreasing trends in fim(t) and increasing trends in ai(t) during the constant-force224

endurance task would substantiate the presence of localized muscle fatigue [2,18,19].225

Previous system-based monitoring studies [31–33] used the instantaneous energy (< f 0|t >),226

rather than ai(t), as an input to the dynamic model described in Section 2.6.3. However, we adopted227

ai(t) because it is analogous to the RMS amplitude of the sEMG signal that reflects changes in "neural228

drive" due to fatigue [1]. Moreover, the square root calculation in (2) attenuates the high magnitude229

spikes that are produced when computing the zero-order moment, which can be seen in [31]. Previous230

works also extracted two additional sEMG features, which represent the second-order moment and231

entropy of the signal, to be used as model inputs [32–34]. When including these features in our232

dynamic model, the performance degradation metric described in Section 2.6.4 did not significantly233

change. Therefore, we reduced the complexity of our model by restricting the number of model inputs234

to include only the ai(t) and fim(t) for each muscle.235

2.6.2. Normalization236

Data from the MVC and endurance tasks were smoothed using 10 ms and 1.5 ms sliding windows,237

respectively. Maximal values obtained over a 1.5 s period around the peak MVC reference force were238

determined for each muscle and used to normalize the corresponding ai(t) signals from the endurance239

task. Force and fim(t) signals from the endurance task were normalized to their average values during240

the initial 10 s of the endurance task. All signals were then downsampled to 100 Hz. This procedure241

prepared the data to be used in the model described in Section 2.6.3. Figure 3 depicts the force and242

sEMG features after normalization for one representative participant.243

The normalization strategy presented in this work was another improvement made to previous244

system-based monitoring attempts, which used data from the entire endurance task to normalize the245

signals [32,33]. By scaling ai(t) to MVC values and fim(t) to initial values, our normalization approach246

produced signals that are more representative of neural activation signals and the frequency-based247

sEMG indices found in the literature for assessing localized muscle fatigue. Moreover, our approach248

could be employed for online performance assessment because the only data needed for normalization249

was collected at the beginning of the experiment (i.e., baseline MVC contractions performed before250

testing and the initial few seconds of the endurance task).251

2.6.3. Modeling252

Human skeletal muscle can be considered a viscoelastic system whose physiological input is253

a neural signal and output response is a generated force [50]. Thus, the normalized sEMG features254

extracted from the triceps brachii (long, lateral, and medial heads) and anconeus muscles were used255

as neural inputs to a dynamic model whose output is elbow extension force. The dynamics were256

represented using an autoregressive moving average model with exogenous inputs (ARMAX). This257

form of parametric system identification approximates force as a linear transformation of sEMG258

features and noise terms and can be expressed as259
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Figure 3. Normalized signals for a single representative participant during the endurance task. (Top)
Elbow extension force. (Middle) Instantaneous amplitude (ai(t)) and (Bottom) instantaneous frequency
( fim(t)) features for the elbow extensor muscles. Gray shaded area signifies the reference data set.

A(q)y(t) =
nu

∑
i=1

Bi(q)ui(t) + C(q)e(t) (4)

where the system output, y(t), is the elbow extension force, the system input, ui(t), is an nu x 1260

vector of the normalized sEMG features, and e(k) is the model disturbance considered to be zero mean261

Gaussian process noise. Since two sEMG features (ai(k) and fim(k)) were extracted from each muscle,262

nu = 8. The polynomials A, Bi, and C are expressed in terms of the time-shift operator, q−1, and can be263

written as264

A(q) = 1 + a1q−1 + ... + ana q−na

Bi(q) = b1 + b2q−1 + ... + bnb q−nb+1 (5)

C(q) = 1 + c1q−1 + ... + cnc q−nc
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where na, nb, and nc are their respective orders. The model was structured such that each265

muscle is considered a second-order dynamic system [32]. This approach is in line with Gottlieb and266

Agarwal [50] and Thelen et al. [51] who found that a second-order system can adequately describe the267

functional relationship between sEMG and force [50] or joint torque [51]. Thus, the orders of the model268

polynomials were selected to be 8 for A(q) and Bi(q) and 7 for C(q). Separate models were trained for269

each user with data selected from the initial 15 s of the endurance task. This training data set captures270

the state of the users before significant fatigue could develop. Thus, the trained model, referred to as271

the "fresh model" (Figure 3), captures the system dynamics corresponding to the user’s least degraded,272

or least fatigued, state.273

2.6.4. Performance Tracking274

Using the training data set, a reference distribution, P, of 1-step ahead prediction errors was275

generated by the "fresh model." The remaining data from the endurance task was segmented into T276

epochs that were 4 s in length. The endurance time for each participant determined the total number277

of epochs. These data segments were sequentially presented to the "fresh model" to calculate the278

latest 1-step ahead prediction error distributions, QT . The Fidelity similarity metric [52,53] was then279

calculated to evaluate the amount of overlap between the reference and updated distributions over280

time. The metric, which is referred to as the Freshness Similarity Index (FSI), is defined as281

FSI = 1−
N

∑
i=1

√
P(i)QT(i) (6)

and ranges from 0 to 1, where values near 0 indicate a high degree of similarity and those close to282

1 suggest little similarity. For context, if the dynamic system remains unaltered with time, the updated283

distributions will be comparable to the fresh distribution. However, if the system dynamics change284

due to fatigue or injury, for example, the updated distribution will shift or change shape, reducing the285

amount of overlap with the fresh distribution. Thus, the FSI is a metric that reflects how the ARMAX286

approximation of the system dynamics degrades over time with respect to a normal, unfatigued state.287

Previous system-based monitoring studies used different measures of divergence, including288

Matusita’s overlap coefficient measure [31–33] and the Kullback-Leibler divergence measure [33].289

However, the Fidelity similarity metric was chosen for our work due to its superior sensitivity to290

changes in modeling errors for the data in this study. All data processing was conducted using291

MATLAB software (R2017b) [54].292

2.7. Statistical Analysis293

A paired samples t-test was used to test for differences between baseline (pre-endurance task)294

and follow-up (post-endurance task) MVC forces, and Cohen’s d was used to calculate the effect size295

between time points. A one-factor repeated measures analysis of variance (RM-ANOVA) was used to296

evaluate mean differences in RPE scores collected after the first, middle, and last 30s of the endurance297

task. For each sEMG feature, a two-factor RM-ANOVA was used to test for differences across time and298

within muscles using average values over the first, middle, and last 30 s of the endurance task. FSI299

was quantified in two ways. For statistical analysis, averages over the first, middle, and last 30 s of the300

endurance task were used in a one-factor RM-ANOVA to evaluate mean differences over time. For301

graphical representation, average FSI values over each 1% of the endurance time were presented. A302

Greenhouse-Geisser correction was applied to correct for violations of sphericity when Mauchly’s test303

was significant. Significant main effects were further examined using estimated marginal means with304

a Tukey-Kramer adjustment for multiple comparisons.305

To evaluate the associations between FSI and measures of force-generating capacity (MVC306

force) and self-perceived fatigue (RPE scores), within-subject correlations [55] were performed using307
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repeated-measures correlation (rmcorr) [56] analysis. Although associations between parameters may308

typically be analyzed using simple correlations that quantify the between-subject association, the309

within-subject association is more important in this study given the FSI is an individual-specific metric.310

Rmcorr analysis also provides benefits over simple correlation techniques when considering the change311

in variables over time. Multiple data points per participant can be used in the rmcorr, whereas simple312

correlations require time-series data to be aggregated so that all observations are independent of each313

other. As a result, rmcorr can yield much greater power than simple correlation methods and detect314

relationships between variables that might otherwise be masked by using aggregated data. Two rmcorr315

analyses were used to estimate linear models with subject-specific intercepts relating FSI to MVC force316

and FSI to RPE scores. Paired data from the start and end of the endurance task (i.e., pre-endurance317

task/first 30 s and post-endurance task/last 30s) was used for the rmcorr between MVC force and FSI,318

and data from the first, middle, and last 30 s of the task was used for the rmcorr between RPE and FSI.319

The resulting rmcorr coefficient (rrm) quantified the common within-individual association between320

variables.321

Although the results from rmcorr will be used to evaluate the FSI metric, between-subject322

associations are also reported based on simple correlations. To minimize biases introduced by323

the time-dependency among data points, the paired data was aggregated into difference scores324

representing the overall change in measures from the start to the end of the endurance task. Pearson’s325

product-moment correlation coefficient (r) was then used to assess the association between FSI and326

MVC force. Spearman rank correlation coefficient (rS) was used to evaluate the relationship between327

FSI and RPE because the RPE scores were treated as ordinal data. The Shapiro-Wilk Normality Test on328

difference scores was used to test for normality. The test revealed that p-values were greater than 0.05329

for all sets of differences scores, indicating that the distribution of the data is not significantly different330

from a normal distribution. We hypothesized that FSI would be negatively correlated with MVC force331

and positively correlated with RPE.332

Using the guidelines presented in [57], correlation coefficients were interpreted as very strong333

(r≥0.9), strong (0.7≤r<0.9), moderate (0.5≤r<0.7), weak (0.3≤r<0.5), negligible (r<0.3). All statistical334

analyses were conducted using R software (3.6.1) [58]. RM-ANOVAs and follow-up tests were analyzed335

using the afex and emmeans packages. Within-subject correlations were determined using the rmcorr336

package [56]. Statistical significance was set at p < 0.05 for all testing. Data are reported as mean ±337

standard error of the mean (SE) unless stated otherwise.338

3. Results339

3.1. Confirmation of Fatigue340

The average endurance time across participants was 287.4 ± 28.0 s. The average MVC force341

at baseline was 139.8 ± 10.1 N and significantly declined by 49.5± 8.8 N, or 35.6± 6.1%, (t(7) =342

−5.63, p < .001, d = −1.99; Figure 4a) at follow-up. This substantial decline in MVC force from baseline343

to follow-up verifies that the experimental protocol successfully induced fatigue across participants.344

A significant change in mean RPE scores occurred during the endurance task (F(2, 14) = 74.15,345

p < .001, η2
p = .91; Figure 4b). Post-hoc pairwise comparisons revealed significant differences between346

all measured time points (all p-values < .001). There was an overall mean increase of 5.9± 0.5 across347

participants, with slightly higher changes in scores during the first half (3.2± 0.5) compared to the348

last half (2.6± 0.5) of the task. The overall rise in RPE scores indicates the endurance task became349

increasingly more difficult for the participants as time progressed, providing evidence of self-perceived350

fatigue.351

3.2. Evidence of Localized Muscle Fatigue352

A significant main effect of time was also found for the instantaneous amplitude (ai(t)) during353

the endurance task (F(1.38, 9.68) = 116.65, p < .001, η2
p = 0.83; Figure 5). No significant differences354
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Figure 4. Measures of fatigue. (a) Maximal voluntary contraction (MVC) forces taken at baseline
(pre-endurance task) and follow-up (post-endurance task). (b) Ratings of perceived exertion (RPE)
during the first, middle, and last 30 s of the endurance task. Dark blue bars and data points connected
by solid lines are means ± SE. Dotted lines represent data from a single participant (n = 8) whose
assigned color is consistent across figures. MVC force significantly declined (p < .001, d = −1.99) and
RPE significantly increased over time (p < .001, η2

p = .91).

were present across muscles (F(2.04, 14.27) = 3.48, p = .058, η2
p = 0.33), nor was there a muscle by355

time interaction (F(1.94, 13.58) = 3.26, p = .071, η2
p = 0.32). The mean ai(t) across all muscles at the356

beginning, midpoint, and end of the task was 0.17 ± 0.02, 0.2 ± 0.02, and 0.34 ± 0.02, respectively.357

There was an average increase of 16 ± 1% (p < 0.001) over the course of the task, with a greater358

increase in ai(t) during the second half of the task (13 ± 1%, p < 0.05) compared to the first half (3 ±359

1%, p < 0.001).360

There was a significant main effect of time for the instantaneous mean frequency ( fim(t)) during361

the endurance task (F(1.19, 8.34) = 33.97, p < .001, η2
p = 0.83; Figure 5). There were no significant362

differences across muscles (F(1.88, 13.14) = 2.82, p = .098, η2
p = 0.29), nor was there a muscle by time363

interaction (F(2.80, 19.57) = 2.55, p = .089, η2
p = 0.27). The mean fim(t) across all muscles during the364

first, middle, and last 30s was 0.98 ± 0.02, 0.86 ± 0.02, and 0.77 ± 0.02, respectively. On average, the365

decrease in fim(t) during the first half of the task (12 ± 2%, p < .001) was slightly greater than the366

decrease during the second half of the task (9 ± 2%, p < 0.05), resulting in an overall decline from367

start to end of 20 ± 2% (p < .001).368

The average increase in ai(t) coupled with a decrease in fim(t) across muscles indicates that369

significant localized fatigue developed in the elbow extensor muscles during the endurance task.370

These trends in sEMG features can be attributed to central and peripheral nervous system mechanisms371

and intramuscular adaptations [2,17,18]. Our results are consistent with other studies that evaluated372

the elbow extensor muscles in male participants during sustained isometric contractions [39,40]. For373

an isometric endurance task held at 25% MVC, Krogh-Lund and Jorgensen [40] found that the median374

frequency decreased almost linearly in the medial head of the triceps brachii. The RMS amplitude375

also increased in this muscle, showing greater changes in the last half of the contraction compared to376

the first. These results parallel the average trends across individuals in our study for fim(t) and ai(t),377

respectively, of the triceps medial head (Figure 5, third column). Davidson and Rice [39] observed378

significant increases in the RMS amplitude of all three triceps heads (medial, lateral, and long) during379

an isometric endurance task at 20% MVC. The amplitude of the anconeus muscle, however, revealed380

smaller increases from the start to the end of the task. Moreover, the long head of the triceps displayed381
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Figure 5. Normalized sEMG features from the elbow extensor muscles. (Top) Instantaneous amplitude
(ai(t)) and (Bottom) instantaneous mean frequency ( fim(t)). Dark points separated by solid lines are
means ± SE for the first, middle, and last 30 s of the task. Dotted lines represent data from a single
participant (n = 8) whose assigned color is consistent across figures. There was a significant main
effect of time for fim(t) (p < .001, η2

p = 0.83) and ai(t) (p < .001, η2
p = 0.83).

the greatest increase in amplitude across participants at the end of the contraction compared to the382

other muscles when the participants’ shoulder was in 90◦ of flexion [39]. The average trends in ai(t) in383

our study are in agreement with these findings (Figure 5, bottom row).384

The anconeus and long, lateral, and medial heads of the triceps brachii are considered a synergistic385

muscle group because they all act to extend the elbow [59]. Evidence suggests that these muscles386

follow a general hierarchic recruitment pattern to preserve energy [60], where the order of activation387

depends upon the muscle’s size [60], joint articulation [60,61], fiber composition [59,62,63], and level388

of effort required by the task [60,64]. Following these principles, the anconeus muscle will activate389

first at low levels of force, followed by the medial head of the triceps brachii. When effort reaches390

a moderate-to-high level, the lateral head will be recruited next, followed by the long head [60].391

When averaged across individuals, the results from our study closely mirror this recruitment strategy392

(Figure 5, bottom row). The anconeus displayed the greatest average ai(t) of all the synergists at the393

start of the task. During the first half of the task, sEMG of the medial head showed a moderate increase394

in ai(t) and the largest decrease in fim(t). The ai(t) of the lateral head remained nearly unchanged,395
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while the fim(t) showed a modest decrease during this period, indicating it may not have been fully396

recruited yet. During the second half of the endurance task, all muscles showed steady increases in397

ai(t) and decreases in fim(t), with the long and lateral heads of the triceps brachii showing the greatest398

mean changes. These results show that the endurance task, whose target force was only 30% MVC,399

started as a low effort task but progressed to a moderate-to-high effort task that required increased400

recruitment of all muscles. The average rise RPE confirmed that subjects felt the level of effort required401

to maintain force increased during the task.402

Although a hierarchic recruitment pattern [60] is evident when averaged across participants,403

considerable inter-individual variation in this strategy was present in our study. For example, some404

participants (S6) showed the greatest changes in sEMG activity for the long head of the triceps, whereas405

others revealed more dynamic trends in the medial head (S4) (Figure 5). Moreover, trends in the sEMG406

amplitude of the anconeus muscle varied widely across individuals. Inter-muscular variability was also407

evident in our study. The fatigue response within a muscle is known to be variable over time [28,65]408

and often exhibits curvilinear behavior depending on the intensity of the muscle contraction [66] and409

activation of other synergist muscles. This type of behavior is most notable in the linear and non-linear410

trends in the instantaneous amplitude of the anconeus muscle, and in the reversed trends in the triceps411

brachii heads over the last half of the endurance task for participant S8 (Figure 5).412

3.3. Trends in Performance Degradation413
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Figure 6. Freshness similarity index (FSI). (a) Dark blue data points separated by solid lines are means
± SE for the first, middle, and last 30 s of the task. (b) The dark blue line with shaded envelope
represents the mean ± SE over each 1% of endurance time. Additional colored lines (dotted in (a), solid
in (b)) represent data from a single participant (n = 8) whose assigned color is consistent across figures.
FSI increased significantly over time (p < .001, η2

p = .83).

There was a significant change in average FSI over the course of the endurance task (F(2, 14) =414

34.17, p < .001, η2
p = .83; Figure 6a). Post-hoc pairwise comparisons showed significant differences415

between all time points (all p-values < .001). From the first 30s to the last 30s of the task, FSI416

increased by an average of 0.45± 0.05. These results demonstrate that the FSI metric was sensitive to417

fatigue-induced changes in performance over time. The significant increase observed in the FSI metric418

(Figure 6) indicates that a progressive temporal change occurred in the dynamic relationship between419

muscle activity and force output during the endurance task. This general trend coincides with changes420
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in force-generating capacity (MVC force), self-perceived exertion (RPE), and localized muscle fatigue421

( fim(t) and ai(t)), suggesting that the phenomenon captured by the FSI metric reflects a degradation in422

performance over time.423

The full time-series of FSI values for each participant are displayed in Figure 6b. Although the424

average trend in FSI is close to linear when averaged across individuals, the majority of participants425

displayed a non-linear degradation in performance. Moreover, inter-individual differences in the426

non-linear trends were also apparent. Performance degraded quickly for some participants during the427

first half of the experiment (S7, S8), whereas others (S2, S5, S6) showed greater rates of change during428

the latter half.429

3.4. Relationship between Measures of Performance Degradation and Fatigue430
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Figure 7. Repeated measures correlations between the freshness similarity index (FSI) and (a) maximum
voluntary contraction (MVC) force and (b) ratings of perceived exertion (RPE). Data points are grouped
by participant (n = 8), where each color summarizes all observations from one participant and
corresponding lines represent the rmcorr fit for that participant. Participant color assignments are
consistent with those in other figures. FSI revealed a strong negative relationship with MVC force
(rrm = −0.86, p < 0.01) and a strong positive relationship with RPE (rrm = 0.87, p < 0.001).

The rmcorr analyses revealed a strong negative association between FSI and MVC force (rrm(7) =431

−0.86, 95% CI [−0.98,−0.32], p < 0.01; Figure 7a), and a strong positive association between FSI432

and RPE (rrm(15) = 0.87, 95% CI [0.64, 0.96], p < 0.001; Figure 7b). These analyses were used to433

evaluate whether changes in performance degradation were paralleled by changes in mechanical434

and self-perceived fatigue within the individual. In other words, for a given individual, was an435

increase in FSI associated with a decrease in MVC force and an increase in RPE. The results indicate436

that participants who displayed significant performance degradation also experienced a considerable437

reduction in force-generating capacity and a rise in perceived effort. These strong within-subject438

relationships between FSI and both well-established measures of fatigue suggest that the degradation439

in performance captured by the FSI metric is representative of fatigue, thereby substantiating the use440

of an ARMAX-based monitoring paradigm for assessing fatigue.441

Simple correlations between overall changes in FSI and MVC force (r(6) = .41, p = .846) and442

overall changes in FSI and RPE across participants (rs = −.34, p = .796) were not significant. However,443
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we did not expect to observe between-subject associations. Between-subject associations would suggest444

that participants with high values of FSI also tend to have high values of RPE and low values of MVC445

force. However, since the FSI is an individual-specific metric, its absolute value may not be comparable446

across participants.447

4. Discussion448

4.1. Viability of a System-Based Monitoring Approach for Assessing Fatigue449

The primary purpose of this study was to substantiate the viability of the system-based monitoring450

paradigm for assessing fatigue by relating the FSI metric to well-accepted measures of fatigue that451

capture a net reduction in force-generating capacity (MVC force) and self-perceived fatigue (RPE). The452

strong within-individual associations between FSI and these traditional measures indicate that the453

system-based monitoring approach captured fatigue-induced changes in performance, substantiating454

its use for assessing fatigue. These findings provide the first direct, quantitative link between a455

system-based approach to monitoring performance degradation and well-accepted measures of fatigue.456

To that end, we verified that participants developed fatigue during the endurance task by457

observing significant reductions in MVC force and increases in RPE. Previous studies that implemented458

a system-based monitoring paradigm [31–33] verified their findings by identifying fatigue in individual459

muscles using trends in sEMG features. However, trends in the relevant sEMG features reflect460

localized intramuscular adaptations rather than a global reduction in force-generating capacity [15]461

or heightened perception of exertion [11,12], whereas the FSI metric is a global representation of462

system-based performance degradation. Furthermore, in these works, the sEMG features were used463

as inputs to the vARX and ARMAX models, so comparisons of the sEMG features to the results of464

the FSI metric might be biased. For these reasons, the present study sought to confirm fatigue using465

well-accepted global measures of fatigue that are external to the modeling paradigm (i.e., MVC force466

and RPE) in addition to trends in localized muscle signals. Significant changes in MVC force, RPE, and467

the sEMG features ( fim(t) and ai(t)) indicate that the participants fatigued during the endurance task.468

4.2. Improvements to the System-Based Monitoring Paradigm469

Additional novelty to the research presented in this paper is in the improvements to the470

system-based monitoring paradigm presented in previous works. The improvements, which were471

specified throughout Section 2.6 and discussed in more detail below, serve to more accurately represent472

changes occurring in the NMS and facilitate the use of the system-based monitoring paradigm as an473

online assessment tool.474

We selected the sEMG instantaneous amplitude (ai(t)) as an input to the ARMAX model to475

minimize the influence of high magnitude transients associated with the instantaneous energy feature476

used in other studies [31–34] and provide a comparable sEMG feature to the commonly used RMS477

amplitude. As such, ai(t) served to attenuate signal artifacts and better reflected the neural activation478

of the muscle [1]. To simplify our model structure, we excluded two additional sEMG features from479

the ARMAX formulation that were previously used as model inputs in [32–34]. These extra features,480

which capture the variance and entropy of the sEMG signal, provided redundant information and481

added complexity to our model without improving the sensitivity of the FSI metric to fatigue-related482

changes in the dynamic relationship between the sEMG features and force.483

We normalized the model inputs and outputs in a way that is both consistent with how sEMG484

signals are treated in the literature [18,67,68] and more suitable for online fatigue assessment compared485

to previous works [31–33]. As a result, the magnitude of the sEMG features fell within predictable486

bounds, and data from only the baseline MVC contractions and the initial few seconds of the endurance487

task were needed for scaling. Our strategy would allow for an ARMAX model to be trained using data488

from short contractions performed before the endurance task, then employed for online monitoring489

during the endurance task itself. This offers an improvement to previous works whose normalization490
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methods produced model input values that far exceeded the predictable bounds of 0 to 1 [31] or491

required data from the entire endurance task to obtain the scaling factors [32,33], which would restrict492

the use of the methodology for post-hoc analysis.493

Lastly, sEMG features from all elbow extensor muscles were incorporated as inputs to the494

dynamic model for every participant in this study, providing a complete representation of the495

neuromuscular system responsible for elbow extension. This comprehensive approach extends the496

capability of previous work that used a single synergistic calf [32] or forearm [34] muscle to represent497

the neuromuscular system for isometric plantar flexion and hand grasping tasks, respectively. Although498

evidence suggests that elbow extensor muscles follow a general hierarchic recruitment pattern, these499

patterns can vary considerably between individuals and muscles [60], and did in fact vary in our study.500

Despite these differences, some researchers choose to monitor only one head of the triceps brachii by501

assuming the sEMG activity from one muscle is representative of the entire synergistic group (i.e.,502

the “equivalent muscle" concept [59]). Although this may be true for brief static contractions [59],503

the concept does not apply during submaximal contractions held until failure [39]. Consequently,504

assessment approaches that only monitor how one muscle from a synergist group fatigues could505

underestimate the fatiguing process as a whole. The inclusion of all contributing muscles in our506

model accommodates the inter-individual differences in muscle recruitment strategies without loss of507

information by excluding any one particular muscle. Moreover, our approach eliminates the need for a508

priori information regarding muscle fatigability. This is important because the factors contributing to509

the inter-individual variation (i.e., differences in muscle composition, anatomy, and fitness level) are510

difficult to measure, making it infeasible to know which muscles will be most fatiguable for a given511

participant before an experiment is performed.512

4.3. Performance of the FSI Metric513

The FSI metric in this work showed sensitivity to the performance degradation occurring across514

multiple muscles and sensor sources during an isometric endurance task. The significant increase515

in FSI demonstrates that the metric was sensitive to changes in the dynamic relationship between516

sEMG features from the elbow extensor muscles and force that occurred over time. Alterations in517

this relationship between sEMG amplitude and force are known to occur in the presence of fatigue518

during isometric tasks [29]. Moreover, by utilizing both amplitude and frequency based sEMG features519

from each muscle [5], our multivariate ARMAX model effectively detects fatigue-induced changes in520

the muscle signals [41] and accounts for changes in muscle behavior due to fatigue and those due to521

altered force production [5].522

As a single metric, the FSI also proved to be a succinct representation of performance degradation523

occurring across multiple muscles and sensor sources. Typically, researchers will separately monitor524

changes in individual sEMG features from each muscle and exerted force to evaluate fatigue. Instead,525

our system-based methodology uses an ARMAX formulation to represent the neuromusculoskeletal526

system as an input-output dynamic model and monitors the model’s residuals error over time via527

the FSI metric. This approach reduces the number of potential monitoring parameters from nine528

(eight sEMG features and one force signal) to one (FSI), thereby providing a concise representation of529

fatigue-related degradation in performance.530

Most importantly, monitoring the FSI metric also allows for the continuous assessment of fatigue531

during a task. This can elucidate non-linear performance changes or adaptations that arise over532

time due to fatigue, as evidenced by the curvilinear evolution of the FSI metric for the majority of533

individuals in our study. As a result, the system-based monitoring approach has clear benefits over534

MVC-based approaches that must be performed before and after bouts of exercise.535
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4.4. Advantages of a System-Based Monitoring Approach Over Other Model-Based Techniques for Fatigue536

Monitoring537

The system-based modeling paradigm presented in this paper offers decided advantages over538

existing model-based fatigue monitoring strategies. First, the methodology does not restrict how539

performance degradation can evolve over time, thereby allowing for a non-linear progression of FSI.540

Compared to other model-based fatigue assessment approaches, which utilize a priori assumptions541

that fatigue will progress linearly over time [23,25,26], the methodology is less restrictive and can542

allow for a more accurate evolution of fatigue-induced behavior. Secondly, the ARMAX model used543

in this study need only be trained on a small data set from the initial portion of the task, before544

fatigue onset. Previous fatigue modeling attempts require extensive data sets containing the entire545

time-course of fatigue to train the models [23,25–28]. This constraint limits the practicality of these546

approaches due to time-consuming data collection and computationally expensive procedures. The547

system-based methodology also allows changes in performance to be continually tracked during548

the endurance task itself, in contrast with other models that use reference contractions to probe for549

fatigue-induced changes in parameters at discrete time points (e.g., the beginning and end of the550

task) [28]. Furthermore, our paradigm produces a single overall measure of fatigue, providing an551

advantage over a model-based technique that used multiple model kernels to evaluate fatigue in each552

muscle individually [69]. Lastly, our black-box modeling approach requires very few biomechanical553

assumptions and is capable of performing in a real-time capacity. This offers decided advantages over554

musculoskeletal modeling approaches that demand knowledge of anatomical parameters and involve555

time-consuming optimization procedures [70].556

4.5. Limitations of the Study557

There are limitations to this work that should be considered. Since the system-based modeling558

paradigm is in a nascent state, the meaning of the absolute value of the FSI is not yet well understood.559

This is a common issue shared among fatigue metrics [25,27,28,71], however, because the relative560

change in the parameter over time is generally of more interest than the absolute value of the parameter.561

In fact, the lack of between-subject associations between FSI and other measures of fatigue found in562

our study verified that the relative change in FSI is not reflecting the differences within individuals.563

However, with further investigation and participant-specific considerations, it is possible that FSI564

values can become more interpretable.565

The sample size may be a limitation of the simple Pearson and Spearman correlations used in this566

work. With a larger group of participants, it may be possible to observe significant between-subject567

associations between the FSI and both MVC force and RPE. In fact, a multimuscle fatigue score (MMFS)568

developed in [28] showed weak (r = .31) and moderate (r = −0.56) relationships with ratings of569

perceived fatigue (RPF) and changes in MVC force, respectively, using Pearson product-moment570

correlations on data from 20 participants. In our study, the sample size was sufficient to evaluate the571

sensitivity of the FSI to fatigue-related changes in performance using RM-ANOVAs and demonstrate572

the within-subject associations between FSI and both MVC force and RPE using rmcorr analyses.573

The rmcorr analysis can accommodate smaller sample sizes because it uses repeated measurements,574

and accounts for non-independence of error between observations using analysis of covariance to575

statistically adjust for the inter-individual variability [56]. Since rmcorr uses multiple data points576

per participant, the degrees of freedom and power will generally be higher than simple correlations,577

which use data that are aggregated to meet the assumption that data is Independent and Identically578

Distributed (IID) [56].579

This work includes only male participants. However, it is not uncommon for the group of580

participants to consist of only one gender in fatigue studies [25,28,39,40,65,72]. A related study581

evaluating elbow extensor fatigability during a sustained isometric task at 15% MVC until failure582

reported that there were no differences in endurance time or sEMG amplitude across men and583

women [73]. This is contrary to observations from other muscle groups that exhibit sex differences [73,584
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74]. Thus, despite the single-gender participant pool used in our study, the findings in [73] provide585

evidence that our system-based paradigm could account for gender in this muscle group. However,586

further investigation is necessary to confirm the accuracy of the proposed system-based monitoring587

paradigm for gender, as well as other factors (i.e., age).588

The ARMAX models were trained on individual- and task-specific data in this study. This means589

that the model parameters, which were estimated for each participant individually during a specific590

submaximal isometric task, may not be generalizable to other individuals or tasks, although this591

warrants further investigation. Model specificity is a shared limitation among other model-based592

fatigue assessment strategies [23,25,28]. However, personalized models are still essential for making593

patient-specific clinical decisions [75] or when accurate fatigue monitoring is required, i.e., during594

recovery after musculoskeletal injuries or rehabilitation for patients with neuromuscular disorders [7].595

Lastly, insight concerning the specific muscles experiencing fatigue is not reflected in the FSI, as596

was the case in the model-based approach by [28]. However, the main purpose of the system-based597

methodology is to provide a succinct measure of fatigue-related changes in performance across multiple598

muscles and sensor sources. Thus, condensing the number of monitoring parameters down to a single599

metric allows for a uniform approach to monitoring how the entire NMS system responsible for the600

fatiguing task behaves across individuals. Although only four muscles were considered in the NMS601

system responsible for elbow extension in this study, the system-based monitoring structure is flexible602

to accommodate any number of muscles.603

4.6. Applications of the Study604

There are many practical applications of this research. The ability to characterize and track605

fatigue-related changes in neuromuscular system performance during exercise has the potential606

to inform therapeutic modalities for rehabilitation. It also can become useful when personalizing607

exercise regimens to target strength or endurance deficits, or by indicating when to stop exercising608

before significant fatigue leads to the onset of injury. More specifically, this work has the potential609

to improve fatigue monitoring techniques during robot-aided movement training, which typically610

apply traditional signal processing methods to analyze localized fatigue of individual muscles using611

sEMG [10]. Robotic exoskeletons are equipped with high-resolution sensors, such as force sensors612

and encoders, that can capture kinematic and kinetic measurements reflecting the quality of a user’s613

movement [76]. In combination with physiological measures, such as sEMG, a system-based paradigm614

could fuse the data from these multiple sensor sources and produce a single metric to monitor fatigue,615

such as the FSI. This metric could then be used as an input to an exoskeleton controller that alters the616

level of robot-applied assistance or resistance to accommodate a patient’s capability and needs [77].617

4.7. Future Work618

Several aspects of the presented methodology are ripe for further exploration to enhance its utility619

as a diagnostic and monitoring tool. In this work, we chose to use an isometric task to validate that620

the FSI captures fatigue because it is a simple contraction that does not require the muscle to change621

length, thereby minimizing the non-stationary behavior of the sEMG signals. Further validation using622

concentric and eccentric exercises will open the possibility of fatigue monitoring during dynamic623

movements, which are integral to various therapeutic modalities. Additionally, a formal exploration624

of how the FSI metric behaves across multiple days of testing and in response to periods of rest625

and recovery would help prove its effectiveness as a clinical tool. Further advancements to the626

dynamic model might also lead to improved modeling accuracy and fatigue tracking, especially when627

expanding the application of this work to more dynamic movements involving multiple joints. In this628

work, we assumed a linear dynamic relationship between muscle activity and movement output for629

analytical tractability. Future work could examine the appropriateness of the linear assumption by630

comparing its accuracy to non-linear dynamic models [78]. In the long run, the approach presented in631
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this paper could be adapted to monitor fatigue in real-time and used to update control laws of robots,632

e.g., exoskeletons, for optimal human-robot performance.633

5. Conclusion634

This paper presented and validated a paradigm for continuously monitoring fatigue using a635

system-based approach. The methodology successfully modeled the dynamic relationship between636

multiple sEMG features from contributing muscles to force output, then employed statistical analysis637

of modeling errors to produce a single index that revealed how performance degraded in each638

subject over time. The index of performance degradation (FSI) provided a sensitive and succinct639

representation of the temporal changes in the dynamic relationship between limb force and sEMG640

parameters during submaximal static exercise. The FSI revealed strong within-individual associations641

with two well-established measures of fatigue, substantiating its applicability as a fatigue monitoring642

tool. Improvements to the system-based monitoring paradigm were also introduced to facilitate643

online fatigue assessment and more accurately represent changes occurring in the NMS. This work644

presents the first step toward evaluating the clinical viability of a system-based monitoring strategy for645

assessing fatigue by comparing its performance with traditional measures of fatigue. Ultimately, the646

ability to monitor and assess fatigue has important implications for preventing neuromuscular injury,647

optimizing training loads, and guiding effective, individualized treatment strategies for rehabilitation.648
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