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Abstract: We introduce a sample-efficient method for learning state-dependent
stiffness control policies for dexterous manipulation. The ability to control stiff-
ness facilitates safe and reliable manipulation by providing compliance and ro-
bustness to uncertainties. Most current reinforcement learning approaches to
achieve robotic manipulation have exclusively focused on position control, of-
ten due to the difficulty of learning high-dimensional stiffness control policies.
This difficulty can be partially mitigated via policy guidance such as imitation
learning. However, expert stiffness control demonstrations are often expensive
or infeasible to record. Therefore, we present an approach to learn Stiffness
Control from Augmented Position control Experiences (SCAPE) that bypasses
this difficulty by transforming position control demonstrations into approximate,
suboptimal stiffness control demonstrations. Then, the suboptimality of the aug-
mented demonstrations is addressed by using complementary techniques that help
the agent safely learn from both the demonstrations and reinforcement learning.
By using simulation tools and experiments on a robotic testbed, we show that the
proposed approach efficiently learns safe manipulation policies and outperforms
learned position control policies and several other baseline learning algorithms.

Keywords: Manipulation, Stiffness control, Reinforcement learning

1 Introduction

In recent years, deep reinforcement learning has been successfully used to improve object manipula-
tion with robotic hands [1, 2]. However, one of the primary limitations of these works is that in most
robotic hands, the robot joint poses are explicitly controlled through position control and forces are
implicitly decided. Lack of explicit control over the forces leads to limited safety and inability to
handle uncertainties [3]. These might be critical factors when a robot is operating in unstructured
environments and during the exploratory phase of the learning process [4, 5].

Modulation of stiffness in concert with position control has been shown to address robustness, safety,
and performance under uncertainties [6, 7, 8], and has gained much attention in the learning com-
munity as well [9]. However, stiffness control imposes additional action dimensions, which affects
sample-efficiency of policy learning. This hindrance can be partially mitigated through guidance
via imitation learning [10]. Expert demonstrations have been successfully collected and used in pol-
icy learning for position control-based robotic hands [1, 11, 12]. However, in the case of stiffness
control, such expert demonstrations are expensive and difficult to acquire. Typical demonstrations
can directly be recorded via various sensors, but stiffness is not a measurable quantity, but rather a
relationship.

In prior literature, admittance control has been used to capture equilibrium position trajectories [13,
14]. Subtle and quick impact perturbations are used to measure the compensatory forces and torques
employed by the demonstrator while performing the trajectory, which are then used to implicitly
calculate the stiffness at certain positions. These stiffness estimates are then used to further estimate
and model the stiffness profiles, thereby compounding potential errors. This estimation process is
more ambiguous for object manipulation due to the required precision and accuracy, and therefore
poses a major challenge to learning stiffness control from demonstrations.
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In this paper, we present a novel learning strategy—Stiffness Control from Augmented Posi-
tion control Experiences (SCAPE)—for learning state-dependent stiffness control policies in high-
dimensional problems such as dexterous manipulation. Imitation learning is used in conjunction
with reinforcement learning to provide policy guidance, and we propose a way to bypass the need
for stiffness demonstrations through an augmentation process. This process leverages the knowl-
edge of the robot model such that we do not require expert stiffness control demonstrations. Instead,
position control demonstrations are augmented to infer approximate, suboptimal stiffness control
demonstrations. To address this suboptimality, we use a Q-filter [11] to prevent the agent from
mimicking dangerous choices that may appear in the inferred stiffness demonstrations. We also in-
troduce the concept of an imitation regulator that controls the mode of imitation depending on the
assessment of the current policy. Ablation studies show that these techniques play meaningful roles
in both safety and stability of learning. Through simulation and experiments, we show that SCAPE
produces a successful policy that is robust to different types of realistic uncertainties, and safe in
terms of force interaction.

2 Background and Related Works

Some of the notable past works in learning stiffness control rely on a reference trajectory, which we
refer to as trajectory-dependent approaches. However, the lack of robustness to uncertainties and
variability in the task dynamics renders these approaches inapplicable to dexterous manipulation.
Other recent research aims to learn a stiffness controller that dynamically adapts to the environment,
which we refer to as state-dependent approaches. In this section, we briefly explain some of the
notable attempts to learn stiffness control, and discuss possible shortcomings.

2.1 Trajectory-dependent Stiffness Controllers

One possible approach is to learn time-indexed gain scheduling through PI2 [15], which is a stochas-
tic optimization method that results in a time-indexed reference trajectory that can be tracked by the
robot without modeling the inverse kinematics or dynamics. This approach adds additional parame-
ters to control compliance so that the resulting controller takes environment dynamics into account
and modulates the gains accordingly [16, 17, 18]. However, a solution from PI2 can only opti-
mize about a pre-defined cost function and cannot be used for object-centered manipulation, which
requires highly divergent position and stiffness trajectories depending on the goal and observations.

Another approach uses an Incremental Gaussian Mixture Model (IGMM) and Gaussian Mixture Re-
gression (GMR) to predict the interaction force for the next time-step, and feed-forward appropriate
control effort [19, 20]. The goal of this approach is to learn a feed-forward model such that the feed-
back stiffness control effort can be minimized. However, this approach makes a critical assumption
that expert demonstrations with force trajectories are available, which renders it inapplicable without
such demonstrations.

Trajectory planners combined with reinforcement learning can also be used. Once the trajectory is
defined, a residual control policy can be learned to adjust the gains according to the current obser-
vation. This method is mostly used in simple tasks where a trajectory planner is readily available,
such as in peg-in-hole assembly tasks [21, 22, 23]. While this is a suitable approach for closed envi-
ronments, it is less effective for dexterous manipulation where desired trajectories can change based
on dynamic observations such as dropping the object or unexpected interaction forces. In addition,
due to the lack of policy guidance, the learning process requires a complex reward function as well
as an extensive amount of training time even with a trajectory planner aiding the policy search.

2.2 State-dependent Stiffness Controllers

Due to the specificity of the solution, relying on a fixed reference trajectory or scheduled gain is
bound to result in catastrophic failure in dynamically changing environments. To account for a large
degree of variability in the environment, state-dependent stiffness control policies have recently been
proposed. In this paper, we compare our work with these state-dependent methods, as the existing
trajectory-dependent approaches are inapplicable in dynamic settings.

In one related approach, during hopping and wiping motions [24], the robots successfully produce
stiffness control policies that outperform direct torque control and position control policies. How-
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Figure 1: (a) Proposed learning scheme for SCAPE. (b) Proposed augmentation process of position
control demonstrations.

ever, this approach is strictly limited to simple and repetitive low-dimensional movements. For in-
stance, the robot is allowed to move only in one direction in the hopping task, or along a pre-defined
circular path in the wiping task.

A similar work demonstrates the performance difference based on the form of the control policy [25],
where variable impedance control outperforms all other controller types in simple tasks. Despite the
effort to simplify the problem into a lower-dimensional manifold by keeping the gripper closed in
the door opening task, the variable impedance control (VIC) fails to outperform the fixed impedance
control. A possible culprit can be the high dimensionality induced by VIC. A similar work [26]
observes stability-guaranteed learning for VIC during peg-in-hole tasks.

Other work depicts a task-space impedance controller’s performance in quadruped locomotion [27].
Variable impedance control policies outperform the direct torque control policy in terms of cumu-
lative rewards and robustness to disturbances. Interestingly, impedance controllers resulted in more
energy-efficient policies although the reward function did not consider energy. It is worth noting
that an extensively tuned gait planner was provided to the agent to learn a successful policy.

While these state-dependent approaches show promising results in terms of robustness to uncertain-
ties, these existing approaches focus on simple single-stage, repetitive tasks and require extensive
reward shaping due to the lack of policy guidance. In the next section, we explain how SCAPE
addresses this issue and produces successful state-dependent stiffness control policies, which can be
used in multi-stage tasks such as grasping and manipulation.

3 Methods

In this section, we present our approach, SCAPE, to learn state-dependent stiffness control without
requiring stiffness control demonstrations. Use of imitation learning within reinforcement learning
improves policy guidance, thereby enabling high-dimensional dexterous manipulation. For SCAPE
and all the baselines, we employ Deep Deterministic Policy Gradient with Hindsight Experience
Replay (DDPG + HER, [11]). The overall learning scheme is depicted in Fig. 1a, where the stiff-
ness control policy takes in observed states s and the goal g, and produces an action π(s, g) which
contains the desired stiffness in addition to the desired pose. The controller block is the high-level
controller, which employs task-space stiffness control. SR refers to the overall success rate of the
current policy (i.e., how often does the object reach the goal states while staying intact?).

A commonly used action representation in dexterous manipulation describes only the desired posi-
tion of the actuator in the inner control loop, hence the name position control. On the other hand, a
stiffness control policy outputs actions that describe the desired position of the actuators as well as
the desired stiffness in the corresponding joint, as shown in Fig. 1a. However, as explained earlier,
it is difficult to obtain expert stiffness control demonstrations for imitation learning. Therefore, we
use augmented position control demonstrations as shown in Fig. 1b.
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These demonstrations are typically generated from teleoperation or kinesthetic teaching, and contain
desired position trajectories. In our study, we use 25 demonstrations that accomplish task-related
kinematic goals without consideration for the object fragility (e.g., commanded to fully close the
grippers). We leverage the fact that the stiffness of the robot is known either from the simulation
model or the hardware specifications, and that position control works by moving to the desired po-
sition with the inherent stiffness or position gain of the actuator. In this paper, we refer to this
inherent stiffness as kpassive. Therefore, state-action pairs, (s, a), in common position control
demonstrations can be augmented to that of stiffness control demonstrations, (s′, a′), where the
desired stiffness is kpassive. Consequently, these augmented demonstrations become suboptimal
stiffness control demonstrations since the commanded stiffness of the robot is fixed to kpassive. We
can then infer the reward function of the task from the augmented demonstrations without manual
reward shaping, and at the same time use it to learn improved stiffness control. Note that kpassive
is n-dimensional stiffness, from which we can choose any dimension of interest and modulate the
stiffness. In this paper, we modulate the stiffness in the grasping dimension (i.e., kpassive ∈ R).

3.1 Outperforming the Demonstration

Simple imitation learning in the form of behavioral cloning does not allow the agent to improve be-
yond the performance of the demonstrations due to the cloning loss [11]. The weight of the cloning
loss can be decreased iteratively, assuming that the agent is able to learn a policy equivalent to the
demonstrator early in the iteration [1]. But it is unclear how to determine the amount of dependency
on the demonstrations with respect to the iteration. Also, simply reducing the dependency does not
prevent the agent from cloning the undesirable behaviors seen in the suboptimal demonstrations we
use. Therefore, we adopt additional techniques to encourage the policy to outperform the augmented
demonstrations and address its suboptimality.

3.1.1 Q-Filter

We use a Q-filter [11] to choose which replay transitions to clone from. The fundamental moti-
vation behind learning from demonstrations is the assumption that the demonstrations provide a
near-optimal action. However, this is not true for the augmented demonstrations. A Q-filter allows
the agent to compare the Q values produced by the transitions from demonstrations, (si, ai, g), and
the current policy, (si, πθ(si, g), g). By comparing their values, the agent does not clone the behav-
ior if its current policy provides a better action for the given demonstration state. More formally, the
cloning loss Lbc can be defined as:

Lbc = ||ai − πθ(si, gi)||1Q(si,ai,gi)>Q(si,πθ(si,gi),gi) (1)
However, it is often difficult to infer the subtle difference in the qualities of the policies solely from
examining the resulting Q estimates due to the overestimation issue of Q values [28]. Although the
usage of the Q-filter improves the safety of learning, it tends to produce oscillatory gradients that
prevent convergence of the policy due to its Boolean property [11].

3.1.2 Imitation Regulator

To improve convergence of our method, we introduce an imitation regulator that observes the overall
success rates of the current policy and determines the appropriate source of imitation from: 1) the
augmented demonstrations and 2) the agent’s own past experience. The latter is sometimes referred
to as self-imitation learning [29]. The regulator controls the replay buffer DIR used for sampling
transition batches to imitate as follows:

DIR =

{
Ddemo, if SR < SRref
DSIL, otherwise

(2)

where DSIL and Ddemo refer to the buffers that store the actual experience replay and the aug-
mented demonstrations, respectively. SR ∈ [0, 1] is the overall success rate of the current policy. It
is considered an overall success if the object reaches the goal states and also stays intact throughout
the episode. SRref is the reference success rate that is empirically found. Put simply, the regulator
actively switches the source of demonstrations from Ddemo to DSIL once the success rate reaches
SRref . This brings three primary benefits. First, the agent no longer references the suboptimal
demonstrations which contain undesirable behaviors. Second, the policy converges faster from the
minimized oscillation of gradients. Third, by cloning the previously generated actions, the agent
leverages exploration, thereby improving upon its current policy.
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Figure 2: Initial and final scenes of the (a, b) Block, (c, d) Chip, and (e, f) NuFingers environments.

4 Environments

We use three robotic manipulation environments shown in Fig. 2 for simulation and experiments.
Details for each environment can be found in Appendix A. For simulation, we use robots provided by
OpenAI Gym [30]. In all environments, we do not use the ground-truth force measurements during
training. Instead, we use quasi-static force measurements from the series elasticity of the robot,
which do not require force sensors (i.e., F ≈ kpassive(xdesired − xcurrent)). Note that x is defined
in the same coordinate frame as kpassive. For safety evaluation however, unless stated otherwise,
we use ground-truth force measurements. A successful policy must meet both task-related (e.g., did
the object reach the goal states?) and safety-related (e.g., is the object intact?) goals. For instance,
even if the object reaches the goal states, the task is considered a failure if the applied force exceeds
the breaking force. The task-related kinematic reward is rtask(s) : s → {−1, 0}, and the safety-
related reward is rsafety(s) : s → (−∞, 0]. Combining these reward functions naturally leads the
agent to accomplish the kinematic goal while minimizing the estimated interaction force. For all
environments, the immediate reward R for the observation s is defined as:

R(s) = rtask(s) + rsafety(s)

rtask(s) =

{
0, if kinematic goal is met
−1, otherwise

rsafety(s) = −α||F|| − β||q̇||

(3)

where F is the estimated force, q̇ is the joint velocity, and α and β are normalization coefficients
that depend on the environment.

Furthermore, we implement a low-pass filter with a time constant of 0.05s for all force measure-
ments in the simulation. To validate the robustness under realistic conditions, we include three types
of uncertainties during training: 1) random perturbation to the object within grasp, 2) measurement
noise in the object’s position, and 3) random control failure, that repeats the previous action.

4.1 Quasi-static Pick-and-place Environment (Block)

The Block environment entails a pick-and-place task and is used to verify whether SCAPE is capable
of learning a safe and robust manipulation policy under quasi-static assumptions. In this environment
we assume that the ground-truth force matches the estimated force, which is reasonable to assume
when the object is in grasp and the involved masses are small enough. The observation includes
relative positions between the object, gripper, and the goal, as well as the gripper configurations,
estimated force, and stiffness. The action includes Cartesian movement of the gripper, change in the
gripper configurations, the changes in stiffness and its limit.

4.2 Dynamic Pick-and-place Environment (Chip)

Chip environment is a dynamic version of the pick-and-place environment, designed to demonstrate
that SCAPE produces a successful manipulation policy even in dynamic situations where the agent
does not have access to ground-truth force measurements. The robot is required to slide the object
up the wall using friction. Thus, the ground-truth force comes from not only the finger, but also from
friction, which depends on velocity and normal force. The observation and action spaces are similar
to the Block environment, but the observation also includes the fingertip velocity in Cartesian space,
which is part of the kinematic goal in this case. If only position is considered for the kinematic goal,
we have found that the agent constantly moves the object around the goal location. We postulate
that this phenomenon arises from kinetic friction being smaller than static friction.
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4.3 In-hand Manipulation Environment (NuFingers)

To demonstrate the applicability for in-hand manipulation, we use the NuFingers testbed [7]. We
first train the agent with domain randomization [2] in a representative environment on Gym, and
directly transfer the policy to the robot without any fine-tuning to validate its transferability and
robustness under uncertainties. The ground-truth force measurements are only used for validation.
The observation includes polar coordinates and relative orientation from the object of each finger,
forces, joint velocities, and stiffness. The action includes define radial and tangential movements
of the fingers. Stiffness modulation is applied in the radial direction, which dominates the grasping
force. The task-related kinematic goal is to rotate the object to the desired orientation.

5 Results

In this section, we demonstrate the performance of SCAPE in various environments. Without
the proposed augmentation process, baseline algorithms must learn a stiffness control policy from
scratch [24, 25, 27], since expert demonstrations are not available. We compare SCAPE with these
approaches for the ablation study in Sec. 5.2, as learning from scratch fails catastrophically. For
the main experiments in Sec. 5.1, we compare our results with position control (existing approach),
so that the difference only lies in the policy parametrization. This comparison demonstrates the
importance of using state-dependent stiffness controllers when force-sensitive tasks are involved, as
opposed to existing position counterparts that are widely used in dexterous manipulation [1, 2].

5.1 Experimental Results

Figure 3 depicts the success rates over epochs for the Block, Chip, and NuFingers environments.
For in-depth assessment, we break down the plots to also show success rates for the safety and
kinematic goals. Safety-related success rates refer to the fraction of the time when the experienced
force is smaller than the breaking threshold. Note that exceeding it at any time results in an overall
failure in the corresponding episode.

Kinematic pick-and-place tasks without uncertainties have been easily solved by the position control
policies in previous works [31]. However, Fig. 3a shows that for position control policies, the heavy
force penalty from large forces discourages exploration and prevents the agent from learning to even
grasp the object. SCAPE on the other hand, uses stiffness control policies to successfully minimize
the interaction force and reaches a 100% overall success rate.
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Figure 3: Resulting success rates of SCAPE (solid) compared to position control (dashed). Success
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how often did the object stay intact?) are separately plotted. Overall goals entail both goals.
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Figure 4: For each of the environments, force experienced by the objects and kinematic error of the
resulting policies are shown on the left. The mean Q values, forces, and stiffnesses evaluated after
each epoch are shown on the right.

For the Chip environment where the action space is smaller, the position-controlled agent learns to
complete the kinematic task entailed in the demonstrations to some degree as shown in Fig. 3b.
However, it fails to address the safety issues, thereby breaking the object in almost all of the evalua-
tion episodes. Note that unlike in the Block environment, the ground-truth force measurements are
used for evaluation. It is notable that SCAPE still produced a successful policy by referencing only
the quasi-static force measurements from the series elasticity, which do not include friction.

For the NuFingers environment in Fig. 3c, we find a similar trend as in the Block environment. The
position control approach fails to learn a policy that completes the kinematic task. SCAPE however,
reaps the benefits of stiffness control and finds a successful policy. Most importantly, in spite of the
model discrepancies between the simulation and the actual robot, the resulting policy proves to be
successful after the sim-to-real transfer without additional training. To summarize, it is evident that
a state-dependent stiffness control policy outperforms the position control policy in terms of safety
and robustness under uncertainties and that the SCAPE is capable of producing successful policies.

Figure 4 depicts various data during and after training. It is evident that the proposed approach
quickly learns the necessary stiffness for the completion of the kinematic task. The stiffness and
interaction force of the system are strongly related to one another as can be seen from the similar
trends of the two curves. The existing approach which uses position control on the other hand, does
not adjust the stiffness and therefore fails to reduce the interaction force.

Also, notice that the objects in the Chip and NuFingers environments experience much more force
than what the robot can exert. This is because for evaluation, we use the ground-truth forces which
come from various sources, such as the friction that depends on the normal force and the velocity of
the object. The proposed approach successfully minimizes the ground-truth force without the actual
measurement. While actual measurements will improve the stability, we expect the improvement to
be marginal in the tested environments since large masses or explosive movements are not involved.

5.2 Ablation Study

To examine the effects of each technique used in this paper, we examine the Block environment
under five different conditions:

• Condition 1: Reinforcement learning from scratch [24, 25, 27], without a Q-filter, without
an imitation regulator

• Condition 2: Reinforcement learning + imitation learning from augmented demonstrations,
without a Q-filter, without an imitation regulator

• Condition 3: Reinforcement learning + imitation learning from augmented demonstrations,
without a Q-filter, with an imitation regulator
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Figure 5: (a) Overall success rates during evaluation and (b) Safety-related success rates during
exploration for different conditions in the Block environment.

• Condition 4: Reinforcement learning + imitation learning from augmented demonstrations,
with a Q-filter, without an imitation regulator

• Condition 5: Reinforcement learning + imitation learning from augmented demonstrations,
with a Q-filter, with an imitation regulator (SCAPE)

Condition 1 represents the approach taken by the researchers in the past [24, 25, 27], where imitation
learning was not used due to the absence of demonstration data. Conditions 2-5 use the augmented
demonstrations introduced in this paper, with different combinations of complementary techniques.
Note that condition 5 is used to produce the results in Fig. 3.

Overall success rates generated under the different conditions are shown in Fig. 5a. From these
results, we confirm that existing approaches [24, 25, 27] do not produce any meaningful results for
multi-stage tasks (e.g., approaching an object, grabbing the object, and relocating the object). For
such tasks, the augmented demonstrations play a crucial role in providing guidance to the policy
through imitation learning.

Moreover, in conditions 2 and 3, the agent is unable to filter out undesirable behaviors, thereby
consistently breaking the object during exploration as shown in Fig. 5b. Therefore, we confirm that
the Q-filter allows the agent to make safe decisions. Also, applying the imitation regulator without
the Q-filter fails from satisfying safety goals. Lastly, without the imitation regulator, the agent
keeps referencing the suboptimal demonstrations, which causes oscillations and delays convergence.
Switching to self-imitation learning using the imitation regulator helps reinforce some of the past
good behaviors preventing the policy from diverging, which is shown by the higher mean and smaller
variance of the condition 5 compared to those of condition 4.

6 Conclusions

We conclude that our approach, SCAPE, is capable of producing a successful state-dependent stiff-
ness control policy, which plays a crucial role in ensuring safety and performance in dexterous
manipulation. SCAPE produces competent manipulation skills by improving sample complexity
with augmented position control experiences. The suboptimality of the augmented demonstrations
is alleviated by a combination of the Q-filter and the imitation regulator, which results in faster and
more stable convergence to a successful policy. These techniques prevent the agent from blindly
imitating the suboptimal demonstrations, and help focus on the past desirable experience. Through
various manipulation experiments, we validate that SCAPE outperforms the existing position con-
trol and stiffness control approaches. Therefore, SCAPE provides both safety and performance such
that robust dexterous manipulation can be conveniently learned without stiffness control demonstra-
tions. Future work may include extension of our work to seek the feasibility of passive stiffness
modulation, which is a capability of human hands. Passive stiffness not only determines the safety
under robot malfunction but also the dynamic behavior of the robot under sudden impacts.
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A Supplementary Material

A.1 Learning Structure

We use DDPG + HER for SCAPE and all the baselinese in this study. We use the same hyperparam-
eters as OpenAI baselines [32], except for the batch size of 256 (originally 1024).

A.2 Policy Parametrization

In all environments, we use a stiffness variable k to command a desired stiffness in the grasping
direction. For the Block environment, the stiffness is applied to the direction of the parallel gripper
opening/closing. For the Chip environment, the stiffness is applied to the wrist joint’s pitch rotation,
which is the degree of freedom responsible for maintaining the grasp of the chip. For the NuFin-
gers environment, the stiffness is applied to the grasping direction, which coincides with the radial
direction of the polar coordinates.

In addition to the stiffness parameter, klim provides the upper limit for all stiffness controllers in this
paper. We have found that having an extra parameter that controls the upper limit of the stiffness
helps the policy converge faster to the minimum stiffness. Furthermore, such upper limit can be
meaningfully related to the physical passivity of the robot [7].

Therefore, in all environments, SCAPE outputs two additional dimensions of the action space com-
pared to the position control policy, which account for k and klim.

A.3 Environments

Tables below contain detailed information regarding the environments used in the paper.

Table 1: Reference success rates for each environment.

Block Chip NuFingers
SRref 0.65 0.85 0.65

Table 2: List of uncertainties included in the training and evaluation.

Measurement Noise

Property
Adds noise to the measurement

Uniform(-1 cm, 1 cm) (Block, Chip)
Uniform(-0.02 rad, 0.02 rad) (NuFingers)

Application 3D position of the object (Block, Chip)
Rotation of the object (NuFingers)

Occurrence 100%
Random Perturbation

Property
Adds velocity to the object

Uniform(-50 cm/s, 50 cm/s) (Block, Chip)
Uniform(-0.5 rad/s, 0.5 rad/s) (NuFingers)

Application
x-dir (Block)
x1-dir (Chip)

θ-dir (NuFingers)
Occurrence 100%

Control Failure
Property Repeats the previous action

Application Entire action
Occurrence 10%

A.3.1 Details for the Block Environment

The Block environment is a modified version of FetchPickAndPlace environment from Gym. The
grippers are more compliant. Most importantly, the object is now considered broken if the interac-
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tion force exceeds a certain threshold called fragility shown in Table 3. In addition to the original
observation and action spaces, the new observation space now includes force and stiffness, and the
action space includes the changes in stiffness and its limit. The task-related kinematic goal is for
the object to reach the goal position, i.e., ||xo−g|| < d, and the force F is measured from series
elasticity of each gripper. The distance threshold is d = 5cm, α = 2e−3 normalizes the force, and
β = 0. We use a sparse reward function for the task-related kinematic goal to avoid penalizing the
agent from necessary exploration [31], and a dense reward function for the safety-related goal to
minimize the interaction forces. Also, the target location is always in the air to examine only the
grasping solutions and discourage the use of other means of moving the object.

Table 3: List of modifications to model parameters in the Block environment.

Gripper Link Mass (kg) Contact Dimension
Original 4 4
Modified 0.4 6

Gripper Actuator Stiffness (N/m) Control Range (m)
Original 30000 0.0 – 0.2
Modified 250 -1.0 – 1.0

Gripper Joint Armature Damping (Ns/m)
Original 100 1000
Modified 1 20
Object Fragility (N ) Contact Dimension

Original N/A 4
Modified 300 6

A.3.2 Details for the Chip Environment

The robot in the Chip environment has a compliant wrist. The observation space includes the posi-
tions of the object, fingertip, and the goal in Cartesian space. The fingertip velocity is also included.
The action space consists of planar movement of the arm, the pitch movement at the wrist, and the
changes in the wrist stiffness and its limit. The estimated interaction force is the wrist torque τ ,
which is calculated from the series elasticity of the wrist actuator.

The task-related kinematic goal is for the chip to rest at the target location, with small velocity,
i.e., ||so−g|| < d, where s contains the position as well as velocity. Without the velocity goal, the
low fidelity of the friction in MuJoCo leads the agent to continuously move the object around the
goal position without stopping. This phenomenon is likely due to the fact that the kinetic friction
is usually smaller than the static friction. By adding the velocity goal, the agent is penalized from
moving and thus able to successfully learn the task. F is the wrist torque measured from series
elasticity, d = 5cm, α = 2e−2, and β = 0.

Table 4: List of important model parameters in the Chip environment.

Stiffness (N/m) Control Range (m)
Forearm Actuator (x1) 250 0.0 – 0.2
Forearm Actuator (x2) 250 0.0 – 0.2

Stiffness (Nm/rad) Control Range (rad)
Wrist Actuator 50 -1.0 – 1.0

Coefficients Contact Dimension
Frictionfinger−object 1 6
Frictionobject−wall 1 3

Fragility (N ) Mass (kg)
Object 200 0.1

12



A.3.3 Details for the NuFingers Environment

In the NuFingers environment, the object has an integrated force sensor that directly measures the
ground-truth force as well as an orientation sensor using a potentiometer. Also, elastic bands are
installed that ground the object to the equilibrium orientation, providing resistance to the rotation.

The task-related kinematic goal is to rotate the object to the desired orientation, i.e., ||θo−g|| < d,
where ||θo−g|| is the difference between the goal and the current object orientations. The orientation
error threshold is d = π

16 . The vector F contains the forces of each finger measured only in the
grasping direction using series elasticity. The vector q̇ contains joint velocities. α = 4e−1, and
β = 1 are normalization terms.

Furthermore, we apply domain randomization [2] during training to partially account for model
discrepancies. We randomize the position and the width of the object, as well as the elasticity of the
rubber bands of the object as shown in Table 5. Note that other important dynamic properties such
as backlash or Coulomb friction are not modeled in simulation even though they have considerable
effects on the performance of the actual system.

Also, due to the erratic behavior of contact between two concave surfaces, the shape of the object is
assumed to be rectangular as shown in Fig. 6.

Table 5: List of parameter variations for domain randomization in the NuFingers Environment.

Stiffness of Elastic Bands
Variation Uniform(0 N/m, 100 N/m)

Application At the object base
Object Width

Variation Uniform(15 mm, 25 mm)
Application Parallel to the grasping direction

Object Location on the Plane
Variation Original location + Uniform(-5 mm, 5 mm)

Application Perpendicular to the grasping direction

(a) NuFingers Environment (b) Approximated NuFingers Environment

Figure 6: For stable contact between the surfaces in MuJoCo, the object in the NuFingers environ-
ment is approximated as a rotating block.

A.4 Safety during Exploration

Although it is evident that the proposed policy is successful in learning a safe policy under uncer-
tainties, it is not yet clear whether the process of acquiring such policy is safe. In existing works,
safety assessment of the exploration phase is usually disregarded, but we compare the safety of the
different approaches during training and establish that SCAPE is safe and successful both during
and after training. To accurately examine the safety during the acquisition of successful policies,
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we measure the safety-related success rates during the exploration. Note that during exploration, we
add Gaussian noise to the action to improve the policy. The corresponding success rates are shown
in Fig. 7, which shows a significant performance gap between SCAPE and position-controlled poli-
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Figure 7: Safety-related success rates of SCAPE (solid) compared to position control (dashed) for
each environment during exploration.

cies. SCAPE shows consistently safe performance throughout training, whereas almost half the time
the position control policies apply greater force than what the object can withstand in either the be-
ginning or ending phase of learning. Interestingly, these trends are similar to the evaluation results
with deterministic policies. Note that the relatively high safety-related success rates of the position
control for the Block and NuFingers environments are due to the failure in learning to manipulate the
object, resulting in minimal interaction. From these results, we conclude that SCAPE is safer and
superior than the existing position control approach both during the exploration and after training.

A.5 Comparison with a Hybrid Approach

The experiments shown in Fig. 3 demonstrate the performance gap between SCAPE and position
control. Without the augmented demonstrations, the agent must learn position control to solve the
problem or learn stiffness control from scratch as in Fig. 5a. However, if safety during policy
improvement is not a concern, the agent can learn position control from demonstrations without the
force penalty, and then learn stiffness modulation from scratch on top of the resulting policy. But
such hybrid approach requires human input in determining the number of timesteps for each stage
of learning, and safety during policy improvement severely deteriorates. Therefore, we include this
analysis only in the supplementary material.
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Figure 8: Resulting success rates of SCAPE compared with the hybrid approach. Success rates for
task-related goals (e.g., did the object reach the target states?) and safety-related goals (e.g., how
often did the object stay intact?) are separately plotted. Overall goals entail both goals.
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For the hybrid approach, we first use imitation learning on top of reinforcement learning (IL+RL)
until the agent successfully learns to complete the kinematic task (i.e., did the object reach the target
states?) without the force penalty. This stage is identical to the work in [11]. Once the agent learns to
solve the kinematic task, we switch to reinforcement learning (RL) and use the remaining timesteps
to optimize the stiffness parameters with the force penalty included. In this stage, the agent does not
have access to the augmented demonstrations as SCAPE does. For the Block and Chip environments,
we assign half the total number of timesteps in each stage (5e4). For the NuFingers environment,
however, we have found that the agent cannot reach the same level of task-related success rate as
SCAPE with half the number of timesteps. Therefore, we double the amount of timesteps for the
hybrid approach, although this provides an unfair advantage. The results suggest that even though
the agents learn to reach 100% task-related success rates for each problem in the first stage, they
all fail to optimize the stiffness parameters in the second stage. Ultimately, SCAPE outperforms the
proposed hybrid approach in all problems, even in the NuFingers environment, where the hybrid
approach is allowed twice the number of timesteps.
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Figure 9: Safety-related success rates of SCAPE (solid) compared to the hybrid approach (dashed)
for each environment during exploration.

Once training is completed, the hybrid approach appears to outperform the position control policy
shown in Fig. 3. However, this comes at the cost of deteriorated safety during policy improve-
ment as can be seen in Fig. 9. For example, the hybrid approach exerts forces above the breaking
threshold almost 60% of the time in the beginning for the NuFingers environment. This is not only
significantly more dangerous to use compared to SCAPE, but also compared to the position control
approach shown in Fig. 7. The deteriorated safety is mainly due to the absence of the force penalty
in the first stage (IL+RL) of the hybrid approach, which disregards the interaction force.
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