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Abstract— Robotic exoskeletons are promising devices capa-
ble of both administering therapeutic exercises and assessing
human movement quality. Although assessing fatigue is crucial
to informing effective strategies for rehabilitation, existing
metrics for evaluating fatigue during robot-mediated exercise
remain underdeveloped. Current techniques focus on monitor-
ing localized muscle fatigue, but do not consider the complex
relationship between changes in muscle activity and associated
alterations in joint motion during dynamic movement. In this
work, we propose a system-based monitoring paradigm for
tracking fatigue-induced changes in performance. The method
uses a time-series model to approximate the dynamics of a
human-exoskeleton system by mapping muscle activity to move-
ment variables. An index of performance is calculated from
modeling errors to continuously track changes in this dynamic
relationship over time. Results showed that the index effectively
captured fatigue-induced degradation in performance over time
during an exoskeleton-administered resistive exercise. The index
outperformed a traditional indicator of fatigue that is typically
used during robotic intervention, suggesting the proposed
approach has the potential to improve fatigue monitoring efforts
during robot-aided movement training.

I. INTRODUCTION

Fatigue, commonly defined as “any exercise-induced re-
duction in the ability of a muscle to generate force or
power” [1], is a typical symptom of neurological and
cerebrovascular disorders [2]. To guide effective treatment
strategies for rehabilitation, assessing fatigue during thera-
peutic exercise is imperative [3]. Practitioners, however, are
currently limited by standard clinical methods that provide
qualitative metrics with low resolution, such as self-reported
rating scales or questionnaires [4]. Recently, robotic interven-
tions have enabled the development of quantitative metrics
to assess movement quality by harnessing kinematic and
kinetic measurements from high-resolution sensors [5]. How-
ever, the development of metrics to quantify fatigue during
robot-mediated movement has garnered little attention [6].
Studies assessing fatigue during robotic interventions have
focused on applying traditional signal processing techniques
to analyze localized muscle fatigue, but these methods do not
consider the complex relationship between muscle activity
and movement that arises during dynamic contractions.

Localized muscle fatigue is frequently assessed using sur-
face electromyography (sEMG), a non-invasive technology
that records muscle electrical activity. When fatigue develops
in a muscle during a sub-maximal contraction, the frequency
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Fig. 1: Schematic of the 1-DOF exoskeleton. A subject is
attached to the exoskeleton using cuffs. The position of the
upper arm is fixed and the elbow is free to flex and extend.
The torque applied by the exoskeleton actuator (τe) resists
the subject’s movement. Joint angle (θ ) is measured with
a motor encoder. The interaction force between the human
and exoskeleton (Fp) is measured at the wrist port. The
force sensor is mounted to a sliding joint located on the
exoskeleton arm, whose length is le.

content of the sEMG signal decreases and the amplitude of
the signal increases. These changes are attributed to central
and peripheral nervous system mechanisms and intramuscu-
lar adaptations [7], [8], [9].

Alterations in the sEMG signal are commonly detected
using traditional amplitude and frequency analyses. These
methods, which are typically used to assess fatigue during
robot-mediated exercise [6], [10], [11], [12], are appropriate
for analyzing isometric contractions, but cannot be effec-
tively applied to dynamic movements. Under isometric con-
ditions, the sEMG signal can be considered wide-sense sta-
tionary over a short period of time, permitting the use of con-
ventional Fourier-based approaches to analyzing the sEMG
power spectrum. Under dynamic conditions, however, this
assumption is invalid because the power spectrum changes
at a much faster rate [13], [14]. Displacements in joint angle
cause the position of the sEMG sensor to shift relative to
the muscle fibers and the conductivity of the muscle tissue
to change [14], resulting in a non-stationary sEMG signal
that requires more advanced signal processing techniques
to analyze. Joint time-frequency representations, such as



Cohen’s class of distributions and wavelets, have improved
fatigue monitoring efforts by permitting the calculation of
instantaneous amplitude and frequency parameters [13], [14].
However, variation due to changes in joint kinematics [15],
[16], [17], [18], [19] are still evident in the resulting sEMG
parameters.

To reduce this variation, Bonato et al. [13] proposed a
method of establishing a relationship between the sEMG
parameters and kinematic changes during a repetitive, cycli-
cal task. The authors selected the most repeatable portion
of the joint angle trajectory and analyzed the instantaneous
frequency parameter corresponding to this region. Although
the resulting sEMG parameters displayed reduced variability,
this approach involved extensive post-processing. More im-
portantly, assessing fatigue using this method would require
independently analyzing one sEMG parameter per muscle,
which becomes cumbersome as the number of targeted
muscles increases.

In applications outside of robotics, model-based methods
for relating multiple sEMG parameters to movement output
have shown success in producing a single, unified metric
for monitoring fatigue. Existing strategies have applied lin-
ear regression, neural networks, and correlations to map
net changes in sEMG parameters to overall reductions in
power [20] or force [21]. These approaches, however, are
limited by their inability to continuously monitor changes
in the dynamic relationship between sEMG and movement
output over time. This is an important drawback given
the relationship is significantly altered in the presence of
fatigue [22]. The strategies are also restricted by the need
for i) a priori assumptions that fatigue progresses linearly
over time [20], ii) large data sets containing the entire time-
course of fatigue to train models [20], [21], and iii) reference
contractions before and after the fatiguing task [21].

A model-based approach has the potential to improve upon
current fatigue assessment techniques used during robot-
mediated movement, which separately evaluate changes in
sEMG parameters from associated alterations in movement
variables. However, the limitations of existing model-based
methods must be addressed. In this work, we propose
a system-based monitoring paradigm [23], [24], [25] to
track fatigue-induced changes in user performance during
an exoskeleton-administered dynamic task. The method ap-
proximates the dynamics of the human-exoskeleton system
using a time-series model that maps instantaneous sEMG
parameters to movement variables. A single performance
index is then computed to continuously track changes in
this dynamic relationship over time. We hypothesize that
the index will capture degradation in user performance due
to localized muscle fatigue and outperform a traditional
indicator of fatigue based solely on sEMG that is commonly
used during robot-mediated exercise.

II. METHODS

A. Experimental Platform: 1-DOF Exoskeleton

Our experimental platform is a single degree-of-freedom
(1-DOF) exoskeleton (Fig. 1) designed to resist a human
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Fig. 2: Robot control. The torque generated by the exoskele-
ton controller (τe) consists of a prescribed resistive torque
(τresist ) and a feed-forward torque to partially compensate
for the inherent impedance of the exoskeleton (τcomp).

subject performing elbow flexion and extension. The sub-
ject’s upper arm is locked in a vertical position using two
cuffs that are grounded to a rigid linkage. An additional cuff
secures the subject’s wrist to the exoskeleton arm, placing the
forearm in a neutral position with the palm facing medially.
A linear slide rail is mounted between the wrist cuff and
exoskeleton arm. This passive sliding joint compensates for
small misalignments between the exoskeleton and human
joint axes [26] and ensures perpendicular force application
at the human wrist. Interaction forces between the human
and exoskeleton, Fp, are measured with a force/torque sensor
(ATI, Nano25) located between the slide rail and wrist cuff.

The exoskeleton arm and Capstan drive joint are made
of Delrin acetal plastic. The transmission is composed of a
brushless DC motor (Maxon, EC 60 Flat, 100 Watt) and two-
stage gearing system involving a planetary gearbox (Gysin,
GPL042) and Capstan drive. The motor can generate 0.3 Nm
of continuous torque, features an optical incremental encoder,
and operates in current mode with sinusoidal commutation
by the driver (Maxon, EPOS2). The transmission ratios
of the gearbox and Capstan drive are 12.25:1 and 9.85:1,
respectively, producing a combined reduction ratio of 120:1.

B. Exoskeleton Controller

We implemented an exoskeleton controller (Fig. 2) that
applies resistance to the subject’s forearm with the intention
of inducing muscle fatigue during movement. The torque
generated by the exoskeleton controller, τe, emulates an
isotonic resistance training exercise and consists of a feed-
forward torque, τcomp, to partially compensate for the inher-
ent impedance of the exoskeleton and resistive torque, τresist .

Angular velocity and acceleration are estimated from
the elbow joint angle, θ , using a double integral method
with low-pass filtering [27]. The compensation torque then
reduces the inherent friction and inertia of the robot. We fully
compensate for Coulomb friction and partially compensate
for viscous friction and inertia to ensure stability [27]. Never-
theless, the residual torque due to the remaining, unmodeled
robot dynamics are accounted for in the dynamic model used
for post-hoc analysis, which is described in Section II-C.

A constant resistive torque is applied in the direction
opposite to the subject’s movement. The magnitude of this
torque varies depending on the direction of motion since the
purpose of the experiment (Section III) is to resist elbow
flexion. During flexion, the prescribed load is set to 12% of



the subject’s maximal elbow flexion strength (Fmvc). This per-
centage was selected based on the capacity of the exoskeleton
motor. If a resistance torque is not applied during extension,
the feed-forward compensation torque causes the subject to
accelerate more quickly during elbow extension compared to
flexion, making the cyclic movement feel unnatural. Thus, a
small 2 N load is applied during extension. The combined
resistive torque is calculated using the prescribed loads and
moment arm, le, defined as the distance between the center of
the exoskeleton joint axis and center of the wrist cuff (Fig. 1).
To ensure smooth transitions between periods of flexion and
extension, an algorithm is used to adjust the resistive torque
at the extreme ranges of motion. The function records the
maximum angular velocity a subject achieves during the first
five flexion-extension cycles, and normalizes all subsequent
velocities to this value. The normalized velocities, which
range between -1 and 1, are then passed through a sigmoidal
function and multiplied by the prescribed resistive torque.

C. Dynamic Model of Coupled Human-Exoskeleton System

When the subject is attached to the robot, the coupled
human-exoskeleton system can be represented by the fol-
lowing dynamic equation

(Me +Mh)θ̈ +(be +bh)θ̇ +(ke + kh)θ = τm + τp (1)

where inertia moment (Me, Mh), damping (be, bh), and
stiffness parameters (ke, kh) characterize the impedance of
the exoskeleton and human, respectively. The stiffness term,
kh, is used to linearize the gravitational torque acting on the
forearm, such that Mhglhsinθ ≈ khθ [28]. For simplicity, the
coupling between the exoskeleton and human forearm is as-
sumed to be rigid and is represented by interaction port, p, at
the wrist. Accordingly, the total torque exerted on the human
by the exoskeleton is denoted by τp, which is calculated from
Fp and le (Fig. 1). The parameter τm approximates the net
torque produced by the muscles spanning the elbow joint.

We use an autoregressive moving average model with
exogenous inputs (ARMAX) to approximate (1) in a linear
discrete form. The output is defined as the joint angle, θ(k),
and the vector of system inputs is u(k) = [τm τp]. The joint
torque induced by the muscles contracting, τm, is modeled
as a linear dynamic transformation of instantaneous features
extracted from the sEMG signals.

The sEMG features are calculated using Cohen’s class of
time-frequency distributions (TFD) with the so-called bino-
mial kernal [23]. The TFD, represented by C(t,ω), captures
how the energy of the sEMG signal varies in both time, t, and
frequency, ω . Two time-frequency features representative of
the instantaneous amplitude, [< f 0|t >]1/2, and instantaneous
mean frequency (IMNF), < f 1|t >, of the sEMG signal can
be extracted from the zero- and first-order moments of the
TFD as follows

[< f 0|t >]1/2 = [
∫ +∞

−∞

C(t,ω)dω]1/2 (2)

< f 1|t >=
∫ +∞

−∞

C(t,ω)

< f 0|t >
ωdω (3)

These instantaneous features are analogous to the traditional
root-mean-square amplitude [29], [30] and mean frequency
[31], [8], [9] parameters, which are widely used myoelectric
indicators of fatigue for isometric contractions.

The final ARMAX model for the coupled human-
exoskeleton system takes the form

A(q)θ(k) = Bτe(q)τe(k)+ τm(k)+C(q)e(k) (4)

where

τm(k) =
4

∑
m=1

(
B f 0(q)[〈 f 0|k〉]1/2

m +B f 1(q)〈 f 1|k〉m
)

(5)

A, Bτe , B f 0 , B f 1 , and C are polynomials in the delay operator,
q, e(k) is the model disturbance considered to be zero mean
Gaussian process noise, k is the sampling index for sampling
interval T (i.e. k = kT), and m is the muscle corresponding
to one of four sEMG signals.

D. Characterizing Performance Degradation

Separate ARMAX models are trained for each subject
with data selected from the beginning of experiment. The
data set captures an initial set of movement cycles during a
repetitive flexion-extension task, prior to the subject develop-
ing significant fatigue. The trained model, referred to as the
“fresh model”, captures the coupled system dynamics cor-
responding to the subject’s least degraded, or least fatigued,
state. The distribution of 1-step ahead prediction errors the
“fresh model” makes on the training data set is calculated and
referred to as the “fresh distribution,” P. The remaining data
from the experiment is partitioned into time intervals, T , that
are sequentially presented to the “fresh model” to generate
updated 1-step ahead prediction error distributions, QT . The
Fidelity similarity metric [32], [33] is then calculated and
used to monitor the similarity, or amount of overlap, between
the “fresh distribution” and updated distributions over time.
The metric, which is referred to as the Freshness Similarity
Index (FSI), is defined as

FSI =
N

∑
i=1

√
P(i)QT (i) (6)

where i denotes a bin of the distribution and N is the total
number of bins. The FSI ranges from 0 to 1, where values
near 1 indicate a high degree of similarity and those close to
0 suggest little similarity. For context, if the dynamic system
remains unaltered with time, the updated distributions will be
comparable to the fresh distribution. However, if the system
dynamics change due to fatigue or injury, for example, the
updated distribution will shift or change shape, reducing the
amount of overlap with the fresh distribution. Thus, the FSI
is a metric that reflects how the ARMAX approximation of
the system dynamics degrades over time with respect to a
normal, unfatigued state.

III. EXPERIMENT

A. Experimental Protocol

Four healthy, right-handed subjects participated in the
study (Table I). At the start of the experiment, the subjects



TABLE I: Subject demographics, maximal voluntary con-
traction force (Fmvc), and prescribed resistive torque (τresist ).

Subject Age Gender Fmvc (N) τresist (Nm)

1 27 F 136.5 3.41
2 23 M 170.9 5.11
3 20 M 152.0 4.85
4 26 F 109.1 2.72

completed three maximum voluntary isometric contractions
(MVCs) separated by one minute of rest. With their elbow
joint fixed (θ = 90◦), maximal elbow flexion strength, Fmvc,
was measured using a digital force gauge (DFG55-100,
Omega Engineering, Inc.). The highest Fmvc of the three
attempts was used to calculate the resistive torque generated
by the exoskeleton controller, as described in Section II-B.

Subjects then completed three sets of a dynamic task con-
sisting of a five minute work phase followed by five minutes
of rest (Fig. 3a). During the work phases, subjects performed
a cyclic elbow motion against the exoskeleton-applied load.
Full range of motion was defined as θ = 0− 90◦ [18], and
movement speed was dictated by an audible metronome
set to 50 bpm. Each flexion-extension cycle consisted of
two beats, resulting in an average movement frequency of
approximately 0.8 Hz. Real-time visual feedback of the
elbow angle was displayed on a monitor to help subjects
synchronize their movement with the metronome (Fig. 3b-c).
To minimize learning effects, subjects were given a warm-up
trial to practice moving against an applied load in time with
the metronome until they felt comfortable with the task.

B. Data Collection

A Trigno Wireless sEMG system (Delsys Inc., Boston,
MA) was used to measure muscle activity from the biceps
brachii (Bic), brachioradialis (Brach), and triceps brachii
long (TriLong) and lateral (TriLat) heads. Skin preparation
and sEMG sensor placement (Fig. 3d) were performed ac-
cording to industry standards [34]. An xPC Target (Math-
works, MATLAB module) running Simulink Real-Time was
used to operate the exoskeleton in real-time and collect data
at 1 kHz. The actuator and sensors (encoder, force/torque,
sEMG) communicated with the target PC through data
acquisition boards (National Instruments, Inc., Austin, TX.)

C. Data Processing

Raw sEMG signals were bandpass filtered from 10 to
400 Hz using a 4th order Butterworth filter (zero-lag, non-
causal) and DC offset was removed [35]. The instantaneous
sEMG features were then calculated according to (2) and (3),
respectively. The force/torque sensor readings were low-pass
filtered using a 4th order Butterworth filter (zero-lag, non-
causal) with a 6 Hz cutoff frequency to attenuate noise [36].
Prior to modeling, joint angle, torque, and sEMG feature
signals were downsampled to 100 Hz.

Since the coupled human-exoskeleton system defined in
(1) is represented with second-order dynamics, the autore-
gressive (A(q)) and moving average (C(q)) polynomials

Fig. 3: Experimental setup. (a) Subject performing the cyclic
dynamic task against an exoskeleton-applied resistance. (b-c)
Visual feedback provided to subjects. The gauge level cor-
responded to the elbow joint angle. A red LED illuminated
when full ROM was achieved. (d) sEMG sensor placement.

of the ARMAX model were assigned orders of 2 and 1,
respectively. The order of the input polynomials Bτe , B f 0 ,
and B f 1 were determined separately for each subject by
creating a range of model-order combinations and selecting
the model structure that minimized the Rissanen’s Minimum
Description Length (MDL). For each subject, the model was
trained on data taken from the initial four movement cycles
of the first work phase. The amplitude of the training data
set was scaled to range between 0 and 1. Fig. 4 depicts
an example data set used to train the ARMAX model for
a representative subject. The remaining data was normalized
according to the scaling factors and partitioned into segments
containing one full movement cycle, i.e., flexion followed
by extension. The FSI was then calculated for each segment
using (6). The slope of FSI was determined for each work
phase to quantify the trend in performance degradation. An
example of FSI trends are depicted in Fig. 5 for the same
representative subject. Data specified in Figs. 4 and 5 were
passed through a 4th order low-pass Butterworth filter with
6 Hz cutoff frequency for clarity.

A separate analysis was performed to evaluate how the
local fatigue state of each muscle changed over time. Time
points defining the start, middle, and end of each complete
movement cycle were determined from the kinematic data
and used to segment the IMNF signals into periods of
flexion and extension. IMNF values were averaged over the
flexion period for the flexor muscles (Bic and Brach) and
the extension period for the extensor muscles (TriLong and
TriLat). For each work phase, the averaged IMNF values
were normalized to their mean over the initial four movement
cycles. The slope of the IMNF was then calculated. A
significant decreasing trend in IMNF would indicate the
development of localized muscle fatigue [31], [8], [9].

Finally, a sensitivity-to-variability (SVR) metric [37] was
calculated for the FSI and IMNF values from each muscle.
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The metric is defined as

SV R =
max(Î)−min(Î)√

1
P ∑

P
p=1(Ip− Îp)2

(7)

where Î is the best fit line for parameter I and P is the
number of estimates. The SVR relates the total decrease in
the estimate of a parameter to the variability in the estimate
of the parameter. This metric is used to compare the output
of our system-based monitoring paradigm (FSI) to a strictly
sEMG-based approach to monitoring fatigue in a single
muscle (IMNF) across each work phase.
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IV. RESULTS

All subjects revealed significant negative trends in FSI
over time (Fig. 6), which suggests that their performance
progressively degraded during each work phase of the dy-
namic task. In addition, all subjects exhibited a decrease in
IMNF for at least one of the elbow flexors during each work
phase (Fig. 6), indicating the presence of localized fatigue
in this muscle group. However, the statistical significance
of the decreasing trends in IMNF varied across subjects.
For Subject 1, all negative trends in both the Bic and
Brach muscles achieved significance. Subject 4 displayed
significant trends in at least one of the muscles for all work
phases, whereas Subject 2 revealed significant decreasing
trends in at least one of the flexors for the second and third
work phase. Negative IMNF trends for Subject 3 reached
significance for at least one elbow flexor during the third
work phase. Moreover, all subjects displayed decreasing
trends in IMNF for at least one of the elbow extensors during
each work phase, with the exception of work phase three
for Subject 2 (Fig. 6). These trends were significant in two
work phases for Subjects 1, 2, and 3, and one work phase
for Subject 4. Among the elbow flexor muscles, significant
negative trends were more prevalent in the Bic compared
to the Brach. Within the extensor muscle group, negative
IMNF slopes reached significance in a larger number of work
phases for the TriLong compared to the TriLat.

The SVR for the FSI was greater than the SVR from
the IMNF of any muscle when averaged across subjects and
work phases (Fig. 7). Considering each subject individually,
the FSI displayed the highest SVR for all but one subject
when averaged across work phases. For Subject 1, the FSI
was only outperformed by the IMNF for the Brach.

V. DISCUSSION

All subjects revealed indications of localized muscle fa-
tigue, as measured by a decrease in IMNF of the sEMG sig-
nals, during each work phase. These trends were significant
for the vast majority of the work phases across subjects. In
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some cases, however, the IMNF revealed positive trends. This
could be due to a number of physiological factors, including
i) the recruitment of new motor units (MUs) as contractile
failure develops in those already active [7], [38], [15] and/or
ii) increased MU synchronization [15] within the muscle.
Since the exoskeleton controller applied a relatively small
resistive torque during elbow extension, it was expected
that the extensor muscles would not fatigue as much as the
flexors. However, significant fatigue did occur in the triceps
brachii for some subjects. This may be due to the high
proportion of fast twitch muscle fibers present in the long
and lateral heads of this muscle [39], [40], [41], which are
known to be more susceptible to fatigue [42], [15].

All subjects revealed significant trends in FSI, indicating
the relationship between their movement output and muscle
activity progressively changed during the cyclic movement
task. This provides sufficient evidence that the system-based
monitoring paradigm successfully captured alterations in
subject performance over time. The significant decreasing
trends in IMNF for the majority of muscles suggests that the
progressive changes captured by the FSI metric were rep-
resentative of performance degradation caused by localized
muscle fatigue.

The SVR considers the relationship between the long-term
trend in an index (due to fatigue) and the variability about
the trend (due to non-fatigue related factors). According to
the SVR, the FSI outperformed the IMNF for all muscles
when averaged across work phases and subjects. Given the
low sample size in this study, we cannot yet claim the FSI
metric is statistically superior to the IMNF using the SVR.
However, it is evident that our system-based paradigm is
at least comparable to an sEMG-only approach typically
employed during robot-mediated exercise.

To more effectively examine how the FSI compares to
other fatigue indices, including the IMNF and metrics de-
rived from model-based methods [43], [37], future work
should consider modifying the experimental protocol. The
work-to-rest ratio used in this study was chosen to emulate

an exercise that could be performed during rehabilitation.
However, fatigue research tends to focus on longer duration
tasks performed to exhaustion [43], [6]. Tasks executed until
failure will elicit greater fatigue and produce larger changes
in the fatigue index, resulting in higher SVR values than
those found in this study. Thus, additional experimentation
should be performed to test more subjects under conditions
comparable to those found in the literature.

Further research should also incorporate a “gold-standard”
measure of fatigue into the experimental protocol to capture
a net reduction in performance. Although this study cor-
roborated localized-muscle fatigue using IMNF trends for
individual muscles, evidence of a decline in MVC force or
power output would provide confirmation that the FSI is an
objective measure of fatigue, according to its well-accepted
definition [1], [44]. Recent work has validated the use of a
system-based approach for assessing fatigue during isometric
contractions by correlating the FSI with direct measures of
fatigue [45]. However, this type of analysis has yet to be
performed for a dynamic movement task.

Our system-based paradigm provides advantages over a
strictly sEMG-based approach to assessing fatigue during
dynamic tasks that is typically used during robotic interven-
tions. First, it effectively accounts for the inherent variability
brought on by intra- and inter-individual differences and
changes in joint kinematics. It does so by building a model to
capture the interdependence between movement parameters
and sEMG features from all involved muscles and for each
subject individually. Traditional techniques that assess the
IMNF of only one muscle within a group of synergists are
blind to compensatory behavior that can occur in other mus-
cles during a fatiguing task [46], [47], leaving researchers
at risk of drawing false conclusions about the fatigue state
of a muscle group. Moreover, factors such as age, gender,
strength training experience, etc. [48], can cause considerable
variation in synergistic muscle activity between individuals
performing the same task [16]. Secondly, our approach
effectively reduces the number of monitoring parameters to
a single index, eliminating the need to separately assess
changes in individual sEMG and movement parameters.

VI. CONCLUSION

The proposed system-based monitoring paradigm, which
tracks time-dependent changes in the dynamic relationship
between joint kinematics, kinetics, and muscle activity, is an
effective approach for assessing fatigue-induced performance
changes during a robot-mediated dynamic exercise. This
method offers several advantages over traditional sEMG-
based strategies for monitoring fatigue during robotic inter-
ventions. Ultimately, tracking fatigue-related changes in per-
formance has the potential to inform personalized therapeutic
modalities for rehabilitation and guide the development of
new control strategies for robotic movement training [49].
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