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Assessment of Upper-extremity Joint Angles using
Harmony Exoskeleton
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Abstract—The biomechanical complexity of the human shoul-
der, while critical for functionality, poses a challenge for objective
assessment during sensorimotor rehabilitation. With built-in
sensing capabilities, robotic exoskeletons have the potential to
serve as tools for both intervention and assessment. The bilateral
upper-extremity Harmony exoskeleton is capable of full shoulder
articulation, forearm flexion-extension, and wrist pronation-
supination motions. The goal of this paper is to characterize
Harmony’s anatomical joint angle tracking accuracy towards its
use as an assessment tool. We evaluated the agreement between
anatomical joint angles estimated from the robot’s sensor data
and optical motion capture markers attached to the human user.
In 9 healthy participants we examined 6 upper-extremity joint an-
gles, including shoulder girdle angles, across 4 different motions,
varying active/passive motion of the user and physical constraint
of the trunk. We observed mostly good to excellent levels of
agreement between measurement systems with CMCip>0.65 for
shoulder and distal joints, magnitudes of average discrepancies
varying from 0.43◦ to 16.03◦ and width of LoAs ranging between
9.44◦ and 41.91◦. Slopes were between 1.03 and 1.43 with r>0.9
for shoulder and distal joints. Regression analysis suggested
that discrepancies observed between measured robot and human
motions were primarily due to relative motion associated with
soft tissue deformation. The results suggest that the Harmony
exoskeleton is capable of providing accurate measurements of
arm and shoulder joint kinematics. These findings may lead to
robot-assisted assessment and intervention of one of the most
complex joint structures in the human body.

Index Terms—Rehabilitation robotics, Exoskeletons, Kinemat-
ics, Assessment.

I. INTRODUCTION

STROKE is the leading cause of long-term disability in the
United States [1] and in the past few decades a number

of interventions have been adopted for rehabilitation of pa-
tients with upper-extremity motor impairments [2]. Monitoring
changes in the upper-extremity kinematics is critical for deter-
mining the most effective interventions for a particular patient
and condition [3], [4]. Conventional methods for assessment
of function and impairment are inherently subjective [5]–[7].
More objective methods for kinematics assessment such as
goniometers and inclinometers are limited to certain joints,
suffer from inaccuracy [8] and are time consuming. Motion
capture (mocap) systems are generally accurate and reliable
but the process is time consuming, costly, and impractical,
limiting its use to primarily research labs. Robotic exoskele-
tons have emerged as a potential alternative intervention for
upper-extremity rehabilitation [9]–[12]. Due to their built-in
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sensing capabilities that provide high-resolution, robust, and
consistent measurements of kinematic and kinetic quantities,
exoskeletons create an exciting possibility for assessing move-
ment behavior simultaneously with delivering therapy.

The critical yet intricate shoulder complex has been a
challenge to objectively assess and manipulate for therapists.
The shoulder is composed of several joints including a floating
joint of the scapula, connected to the clavicle and humerus
through soft tissue. Altogether the shoulder could be modeled
as being composed of five degrees-of-freedom (DoFs). The
coordination between the scapula and humerus, known as the
scapulohumeral rhythm (SHR) [13], is often impaired in shoul-
der dysfunction [14], [15]. A few attempts have been made
to actively assist shoulder movements with robotic devices
to treat impairments [16]–[21]. However, all these systems
introduce some form of simplification around the patient’s
shoulder complex. To ensure accuracy of measured anatomical
parameters it must be assumed that robotic exoskeletons are i)
sufficient and capable of tracking user’s movement and infer-
ring anatomical joint angles and ii) do not interfere with user’s
natural movements in a significant way. The simplification
of the robot structure may induce unintended reaction forces
and over-constrain motions. Further, the compliance of the
physical interface between the human and robot [22] can result
in intractable relative movements between user and robot.
Thus, to be an effective assessment tool, a robotic exoskeleton
must be capable of accommodating motions at the level of
complexity of the joint while limiting the interface compliance
to avoid excessive relative motions.

We have developed an exoskeleton for bilateral upper-
extremity rehabilitation called Harmony (Fig. 1) [23]. The
shoulder mechanism in Harmony has been designed to actively
support the full mobility of the shoulder in all 5 DoFs
allowing natural movements [24]. However, the accuracy of
Harmony in assessment of user’s joint kinematics has not been
evaluated. In this paper we carry out a quantitative comparison
of kinematic assessment with Harmony exoskeleton and an
optical mocap system. We focus on anatomical joint-space
parameters important for assessment of shoulder movements.
This work may lead to clinically relevant assessments in
post-stroke patients that often exhibit disrupted inter-joint
coordination [25].

II. MATERIALS AND METHODS

A. Modeling

To extract anatomical joint angles we defined coordinate
systems located at the center-of-rotation (CoR) of each joint,
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Fig. 1. Experimental protocol illustration. Marker placement is shown in (a), where the markers grouped in rigid-bodies were highlighted in green (rigid
bodies not highlighted were not used in this study). Different trunk-restraint methods adopted in the active conditions of the experimental protocol are shown
in (a) and (b). Active-abdominal condition is represented in (a), where trunk is constrained with a belt wrapped around the abdomen, and active-bilateral
condition is represented in (b), where trunk is constrained with bilateral attachment to the robot. The kinematic model used to represent anatomical parameters
of the human arm is depicted in (c). Acronyms Lc, Lua, Lf , and Lh represent the lengths of clavicle, upper-arm, forearm, and hand, respectively. In the
picture, participant was positioned in the calibration pose, with σ, SE, SP, SAE, and FPS at 0◦ (SPE singular) and EF at 90◦.

following the recommendations from the International Society
of Biomechanics (ISB) [26]. Based on Harmony’s active
DoFs we analyzed the following six anatomical joint angles:
shoulder elevation-depression, shoulder protraction-retraction,
shoulder angle of elevation, shoulder plane of elevation, el-
bow flexion, and forearm pronation-supination. We show the
transformations used to define the ISB coordinate systems as a
function of the anatomical joint angles in Table I and illustrate
it in Fig. 1c. The symbols HA, R(k,α), and T(k,a) represent
a coordinate system A in the inertial frame, a rotation of α
around k-axis, and a translation of a in k, respectively. The
quantity σ is the angle between z-axis of Hs and the axis-of-
rotation of the elbow joint represented in the inertial frame.

We adopted an optical mocap system with passive markers
as the benchmark sensing modality. We grouped markers
into rigid bodies that allow tracking of position and orien-
tation (Fig. 1). We adjusted markers and camera placement
to overcome constraints and limitations of the environment,
particularly the occlusions and limited access to specific body
segments introduced by the robot (Fig. 1a). We anticipated to
observe relative movement of the human limb with respect to
the robot and to quantify this movement we placed a rigid body
on the robot’s upper-arm linkage. Since the elbow and hand
could not be directly tracked due to occlusion constraints, we
chose to track the upper-arm and the interface attached to the
hand, assuming that there is no significant relative movement
with respect to the hand. This is a reasonable assumption,
given that the custom-made interface used in the experiments
constrains the hand and wrist in three locations, limiting the
relative motion at the wrist joint. To calculate the desired joint
angles, we must track axis of rotation (AoR) of both elbow
and forearm. To obtain these parameters from the available
rigid bodies, we adopted a least-squares algorithm [27] that
uses data captured during isolated elbow flexion-extension and
forearm pronation-supination movements. It gives a relation-

ship between the upper-arm rigid body and elbow AoR, and
between the hand rigid body and forearm AoR.

To define coordinate systems from mocap data representing
the kinematic model of the human arm, we used a priori
information about user’s configuration to define the CoR of
each joint. This information consists of a known calibration
pose and the measured user’s arm segments between the bony
landmarks: manubrium, acromion process, lateral epicondyle,
and ulnar styloid process. The coordinate systems, angles,
and calibration pose are depicted in Fig. 1c. We averaged
rigid bodies data captured over a 10 second time-window
during calibration pose, and used it to calculate rigid trans-
formations from the tracked rigid bodies to the defined ISB
coordinate systems. Hchest was defined by the chest rigid
body, and shoulder, elbow, and forearm CoRs were defined
by the acromion, humerus, and hand rigid bodies. These
rigid transformations were then further applied to estimate
anatomical joint angles from tracked rigid bodies for any
arbitrary movement.

TABLE I
DEFINITION OF ISB COORDINATE FRAMES

Frame Transformation
Hs HchestR(x,SE)R(y,SP )T(z,Lc)

Hs′ HsR(y,SPE)R(x,SAE)

He HsR(y,σ)T(y,−Lua)

Hf HeR(z,EF )T(y,−Lf−Lh)

Hhand HfR(y,FPS)

SE and SP: shoulder elevation-depression and protraction-retraction
SPE and SAE: shoulder plane and angle of elevation
EF: elbow flexion, FPS: forearm pronation-supination

Harmony exoskeleton is equipped with position encoders
attached axially to each of the the robot’s 14 DoFs (seven on
each side). The robot’s structure was modeled as a kinematic
chain with nine DoFs, seven active and two dummy joints to
accommodate the 4-bar-mechanism structure of the shoulder
and to adjust the end-point frame. This kinematic chain can
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be represented using the Denavit-Hartenberg parameters in
Table II [23], [28]. Symbols θ∗i represents a variable angle for
a joint i. The coordinate system of each joint can be obtained
from measured joint angles using forward kinematics [28].
Because the coordinate systems resulting from this model
differ from the ISB recommendation in Fig. 1c, we defined a
second model based on the same principles used for the mocap
data to obtain a comparable structure. During calibration
pose, we averaged angles measured by the robot sensors
over the same 10 second time-window and calculated rigid
transformations from the robot’s kinematic chain coordinate
systems to the ISB coordinate systems. Hchest was defined
by the robot’s inertial frame, and shoulder, elbow, and forearm
CoRs were defined by the coordinate systems attached to joints
3, 4, 6′, and 7. These transformations were then further applied
to estimate anatomical joint angles from robot’s sensor data
for any arbitrary movement.

TABLE II
DENAVIT-HARTENBERG PARAMETERS REPRESENTING HARMONY

Joint a α d θ
1 Lc −90◦ 0 θ∗1
2 0 0 0 θ∗2
2′ 0 90◦ 0 −θ∗2
3 0 −60◦ 0 θ∗3 + 35.3◦

4 0 60◦ 0 θ∗4 − 109.5◦

5 Lua 0 0 θ∗5 + 125.3◦

6 0 0 0 θ∗6 − 90◦

6′ 0 90◦ 0 0
7 0 0 Lf + Lh θ∗7

The adopted calibration pose was defined beforehand and
programmed into Harmony. During the calibration procedure,
the robot drove a participant’s arm to the calibration pose and
locked its position. The robot’s configuration for calibration
was manually defined by physically aligning the upper-arm
and forearm linkages perpendicular and parallel to the ground,
respectively, using a level measuring tool. We positioned the
remaining joints such that the end-effector pointed approxi-
mately forward with respect to the robot’s inertial frame.

B. Experimental Protocol

The goal of the experiments was to quantify discrepancies
between joint angles estimated by robot’s sensors and mocap
data during four single DoF movements: shoulder flexion-
extension, shoulder horizontal abduction-adduction, elbow
flexion-extension, and forearm axial rotation. These move-
ments were used to evaluate shoulder angle of elevation, shoul-
der plane of elevation, elbow flexion, and forearm pronation-
supination, respectively. Shoulder-girdle angles in Harmony
are a result of the SHR assistance and not actively driven
by the user. Therefore, shoulder elevation-depression and
protraction-retraction were evaluated from shoulder flexion-
extension and horizontal abduction-adduction respectively,
where the angles’ ranges of motion (ROM) were significant.

Patients with motor impairments, particularly stroke pa-
tients, exhibit compensation for arm impairment by rocking
or swinging their trunk [29]. To encourage arm motion some
form of trunk restraint must be used. With Harmony two
possible solutions exist for restraining the trunk: either using

an abdominal harness that allows for free arm movement
or attaching patient’s both arms to the bilateral robot. To
study assessment performance under all possible methods
of movement execution and trunk restraint, each movement
was performed under three different conditions: (i) passive:
the robot drives the movement while user is passive (eight
repetitions), (ii) active-abdominal: user drives the movement
with trunk constrained by an abdominal belt that attaches to the
robot’s structure (seven repetitions), and (iii) active-bilateral:
user drives the movement; there is no abdominal constraint
but the left arm is attached to the robot in a stationary
position (seven repetitions). The two active conditions are
illustrated in Figs. 1a and 1b. A baseline control implemented
in Harmony [23] compensates for its dynamics to ensure
transparency for the user (i.e. require minimal forces to move
the robot) in the active conditions, and an impedance controller
enables full assistance in the passive condition.

In the active conditions participants received visual feedback
of their current joint angle and target at all times. To avoid
biasing the results, real-time feedback was acquired with
the Oculus Touch Controller (Oculus VR, Menlo Park, CA,
USA) attached to the hand interface. To ensure consistency
of task execution across participants, we controlled movement
speed using visual cues by making consecutive targets active
or inactive, and auditory cues consisting of beeps from a
metronome following the desired speed. We adjusted the
metronome to match the speed in which the robot executed
the motion in the passive condition. Since we wanted to
replicate the same ROM in all experimental conditions, we
first programmed the joint trajectories in the robot for the
passive condition. In this process, we ensured movements did
not result in collisions and occlusions of the rigid bodies
with body parts, limited movements to be within the robot’s
ranges, and ensured the Oculus Touch Controllers were within
the field of view of its tracking system. Since robot’s DoF
in the shoulder do not exactly match anatomical shoulder’s
DoF, the joint trajectories for the single DoF movements were
determined with a teach-and-play methodology. The ranges
of motion defined for each movement and joint were: in
shoulder flexion-extension, shoulder angle of elevation varied
from −40◦ to −90◦ in the 90◦ shoulder plane of elevation,
with elbow flexion and forearm pronation-supination in 0◦.
In shoulder horizontal abduction-adduction, shoulder plane
of elevation varied from 60◦ to 100◦ in the −90◦ shoulder
angle of elevation, with elbow flexion and forearm pronation-
supination in 0◦. In elbow flexion-extension, elbow flexion
varied from 50◦ to 120◦, with shoulder angle of elevation,
shoulder plane of elevation, and forearm pronation-supination
in 0◦. In forearm axial rotation, forearm pronation-supination
varied from −45◦ to 45◦, with shoulder angle of elevation and
shoulder plane of elevation in 0◦, and elbow flexion in 90◦.

We instructed participants to start from the indicated initial
position, moving to the opposite extremity and back to the
start for as many times as required, following the visual and
auditory cues and attempting to achieve a movement as smooth
as possible. All of the movements were executed with the right
arm, and participants practiced all movements outside of the
robot to get familiarized with the speed and range. During
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data acquisition, they performed eight back-to-back repetitions
in the passive condition and seven in both active conditions
(active-abdominal, and active-bilateral).

Harmony’s interfaces are detachable, which facilitates con-
sistent arm and shoulder location with respect to the robot
across dons and doffs. To maximize consistency also across
participants we attached the hand and upper-arm interfaces
outside of the robot before the experiment started. The hand
interface requires a specific hand placement to grip the hand
thenar and hypothenar eminences along with the wrist, which
reduces its placement variability. The upper-arm interface was
attached with its lower edge 7.15 cm away from the lateral
epicondyle, which is the distance between the robot’s elbow
joint axis and the lower edge of the interface’s cuff. Upper-
arm circumference varies across subjects, and to accommodate
this variability the cuff was secured in place with a fabric strap
and Velcro. To control its tightness, we used a force sensitive
resistor (FlexiForce™) embedded to the cuff’s structure, and
we adjusted the tightness pulling the strap to reach 0.3N.

C. Participants

The target population for this study were right-handed able-
bodied individuals that had no known shoulder injury and
whose body dimensions were within the limits of the Harmony
exoskeleton. Nine participants (6M/3F, age 27.8±5.9 [20, 39]
years, Lc=20.3 ± 1 [18.5, 21.5] cm, Lua=31.7 ± 0.8 [30, 33]
cm, and Lf=26.3 ± 1.63 [24, 28.5] cm), were enrolled and
performed the experimental protocol. The experimental proce-
dure was approved by the Internal Review Board organized by
the Office of Research Support in The University of Texas at
Austin under the protocol number 2013-05-0126 approved on
July 18 2019, and the participants provided written informed
consent that was reviewed by the board.

D. Data Acquisition and Analysis

We tracked mocap data with the Optitrack Prime 17W
system (NaturalPoint Inc., Corvallis, OR, USA) using 10
cameras with a sampling rate of 120 fps, and manually
checked for labeling errors and missed data-points. We se-
curely attached rigid bodies to participants’ skin with tape
on the sternum (right below jugular notch), acromion, and
above biceps brachii (Fig. 1a). We also fixed one rigid body
to the hand interface and to the robot’s upper-arm linkage.
There were no observations of rigid bodies missing all of its
markers for more than a few milliseconds, and we performed
interpolation using cubic spline followed by a pattern-based
interpolation algorithm as necessary. We used a fourth-order
low pass Butterworth filter with cut-off frequency of 2 Hz
to filter tracked positions of all markers before solving for
the rigid bodies. We tracked robot joint angles with built-in
high-resolution magnetic rotary encoders (Contelec AG Inc.)
with a sampling rate of 100 Hz, and filtered the data using a
fourth-order low-pass Butterworth filter with cut-off frequency
of 10 Hz. Different cut-off frequencies were selected to obtain
similar noise properties. We synchronized mocap and robot
sensor data via threshold velocity of the measured joint in
each motion, matching the initial time of the two data sets
when the velocity magnitude exceeded 5 deg/s.

We distinguished repetitions with peak identification using
mocap data to determine the initial time instant and duration
of each repetition. We trimmed the time-series datasets and
normalized their times between 0 and 100% of both mocap
and robot data. To obtain AoR of elbow and forearm angles,
we adopted a least-squares algorithm [27] that uses data
captured during isolated elbow flexion-extension and forearm
pronation-supination movements. For that purpose we used
the first two repetitions in the passive condition of these two
movements, which were excluded from the agreement analysis
in the passive condition. Furthermore, we also excluded from
the analysis the last repetition in the passive condition to
eliminate transitioning effects. Regarding the active conditions,
we excluded the first and last repetitions from the analysis to
eliminate transitioning effects.

We used Bland-Altman plots [30] to qualitatively evaluate
the angle agreement between robot and mocap. These plots in-
dicate an average error along with limits of agreement (LoA).
The LoA indicate a region within which one should expect the
discrepancy to fall. If a linear trend is present in these plots, it
indicates a relationship between discrepancy and joint angle, in
which case the LoA becomes conservative. We used a repeated
measures correlation (rmcorr) [31] analysis to estimate linear
models relating robot and mocap angles with subject-specific
intercepts. We adopted LoA and overall slope from the rmcorr
analysis as primary outcomes to indicate agreement between
robot and mocap. The slope represents proportional bias and
a one-to-one relation indicates perfect agreement between
mocap and robot data. Slopes parallel to the one-to-one indi-
cate accurate proportional association with a systematic bias,
such that negative intercepts imply underestimation by the
robot when compared with mocap, whereas positive intercepts
imply overestimation. We adopted the coefficient of multiple
correlation inter-protocol (CMCip) [32] proposed by Ferrari
et al. [33] as a metric of reproducibility to quantify the
degree of agreement between the two sensing modalities.
The CMCip quantifies the similarity between two waveforms
between zero and one by taking into account shape differences,
systematic bias, correlation, and ROM. We used all five
repetitions of each movement and condition to calculate intra-
subject CMCip. Since values across participants do not follow
normal distribution due to ceiling effects, we calculated the
median and interquartile range (IRQ). We interpreted values
as excellent (0.95<CMC<1), very good (0.85<CMC<0.95),
good (0.75<CMC<0.85), moderate (0.65<CMC<0.75), and
poor (0<CMC<0.65) [34]. It is common to obtain complex
CMCip values for curves with limited ROM and high dis-
persion and we interpreted these results as dissimilarity [33].
The correlation coefficient (r) derived from the rmcorr anal-
ysis and root mean square of the difference (RMSD) were
used as supplementary outcomes. The coefficient r evalu-
ates strength of the association between measurements from
mocap and robot and represents reliability of the calculated
slope. We interpreted correlation as excellent (r>0.9), good
(0.7<r<0.9), moderate (0.5<r<0.7), low (0.3<r<0.5), and
negligible (r<0.3) [35]. The RMSD represents the overall
discrepancy between the two sensing modalities over the
entire movement duration and is a metric traditionally re-
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ported in method agreement analysis. We also calculated
the minimal detectable change (MDC) as a representation
of within-subject measurement sensitivity in each movement
and condition. The MDC is given by 1.96×SEM×

√
2 [36]

and was derived from mocap data in all five repetitions.
SEM is the standard error of measurement given by the
root mean of the within-subjects variances, averaged across
time. We also evaluated intra-subject repeatability in each
condition using the coefficient of multiple correlation within-
protocol proposed by Ferrari et al. [33] from mocap and
robot data, referred as CMCm and CMCr, respectively.
They were calculated and interpreted similarly to the CMCip
but only using data-sets of its respective sensing modality.
High intra-subject repeatability from mocap data suggests that
MDC values are likely associated with measurement- rather
than performance-variability. MDC is a baseline to assess
if differences between the two measurement modalities fall
within an acceptable range. RMSD values lower than the MDC
indicate an acceptable discrepancy, since it suggests inability
of the benchmark system to capture the observed differences.
To minimize effects of within-subject movement variability,
we averaged the five repetitions to obtain one dataset instance
of a specific movement and condition for these analyses, with
the exception of MDC and CMC metrics.

To generate Bland-Altman plots and perform rmcorr analy-
sis, data points must be independent from each other. However,
time-series datasets do not meet this criterion. To minimize bi-
ases introduced by the time-dependency among data points and
have a dataset distribution as close to the Gaussian distribution
as possible, we resampled both mocap and robot data to obtain
20 data points in each dataset equally spaced in time, totalling
180 data points for each movement and condition. We then
visually inspected the datasets as represented in histograms
to check for normality, and no significant skewness was
observed in any movement or condition. Because of the time-
dependency of the samples, the LoA of the Bland-Altman plots
were calculated using the standard 95% confidence interval
and the non-parametric method described in [37].

To calculate relative movement between robot and human,
we extracted time-series translations and rotations between
the robot’s and humerus’s rigid bodies and the translations
between the robot’s and acromion’s rigid bodies in 3D relative
to the robot’s rigid body frame. To capture the changes in the
humerus configuration, we used the humerus’s rigid body to
obtain the orientation of the coordinate system attached to
the shoulder, and only the position of the acromion’s rigid
body was applied in the estimation of anatomical joint angles.
Therefore, we did not extract relative rotations of acromion for
relative movement analysis. Furthermore, we also calculated
movements of the trunk with respect to the calibration pose,
as represented by translations and rotations of the rigid body
placed on the chest in 3D relative to the chest’s rigid body
frame in the calibration pose. Therefore, we obtained a total
of 15 variables to represent relative movement between human
and robot: relative translations in 3D of humerus, chest, and
acromion, and relative rotations in 3D of humerus and chest.

III. RESULTS

Table III summarizes the results for the metrics adopted
to indicate agreement between angles measured by the robot
and mocap. The width of LoAs ranged between 9.44◦ and
41.91◦ with magnitudes of average discrepancies varying from
0.43◦ to 16.03◦. The slopes for each joint ranged between
0.47 and 1.65. The RMSD ranged between 2.10◦(0.70◦) and
15.94◦(2.62◦). The greatest agreement was in the forearm
pronation-supination, which demonstrated narrowest LoAs,
all within the range [−10◦, 6◦], slopes closest to one, all
under 1.05, and excellent degrees of agreement indicated by
CMCip values. The greatest discrepancy was in the shoulder
protraction-retraction, which demonstrated slopes most distant
from one with the lowest correlation coefficients and waveform
dissimilarities indicated by complex CMCip values. The low-
est movement variability was observed in the shoulder girdle
angles as indicated by MDC values, all under 3.15◦ and as low
as 1.64◦. The largest movement variability was in the forearm
pronation-supination with MDC values up to 13.29◦.

The Bland-Altman plots generated for each joint and con-
dition are shown in Fig. 2. In each of the six figures, each
column represents one condition. We depicted the average joint
angle trajectory over normalized time and standard deviation
calculated across all participants, estimated by both, mocap
and robot’s sensor data. We show values of CMCr and
CMCm for each condition in the bottom of these figures, indi-
cating mostly excellent intra-subject repeatability for the DOFs
targeted by the experimental tasks (shoulder plane and angle
of elevation, elbow flexion, and forearm pronation-supination)
in both sensing modalities. Right below the trajectory, we
presented the overall (red) and participant-specific slopes as
well as the 20 samples per participant used in the analysis. The
slopes represented in Table III reflect the visual illustration
of the overall slopes shown by the red lines. The one-to-
one slope (black dotted line) indicates perfect agreement. The
bottom-most figures represent the Bland-Altman plots, with
the average discrepancy observed across all participants and
the standard and non-parametric LoAs.

Overall, elbow flexion and forearm pronation-supination
presented excellent degree of agreement as indicated by
CMCip values. LoAs for elbow flexion and forearm
pronation-supination indicate discrepancies falling within a
range of approximately ±10◦, excluding the active-bilateral
condition. Slopes are between 1 and 1.1 in all conditions and
RMSD values fall under 6.04◦(1.83◦). Strong agreement of
forearm pronation-supination and elbow flexion can also be
observed in the time-series data (top rows of Fig. 2) where
we can see substantial overlap between the curves.

Results for the shoulder joint angles (shoulder angle and
plane of elevation) generally present good to excellent de-
grees of agreement between robot and mocap estimations, as
indicated by the CMCip values. LoAs are larger compared
to distal DOFs, but slope values are generally comparable to
forearm pronation-supination and elbow flexion (Table III) and
Bland-Altman plots (Fig. 2). However, we observed greater
discrepancies in the passive condition of shoulder angle of
elevation, which shows instances with moderate degree of
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TABLE III
QUANTITATIVE RESULTS FOR THE METRICS USED TO EVALUATE AGREEMENT

Condition Discrepancy [LoA] Slope CMCip [IQR] r(170) [CI] RMSD (SE) MDC
Shoulder elevation-depression

passive 1.97◦ [-6.43◦,10.36◦] 1.65 − 0.95 [0.93,0.96] 3.45◦ (0.75)◦ 3.15◦
active-abdominal 1.41◦ [-6.57◦,9.39◦] 1.36 − 0.96 [0.95,0.97] 3.21◦ (0.87)◦ 2.58◦
active-bilateral 2.68◦ [-5.86◦,11.21◦] 1.44 − 0.94 [0.92,0.96] 3.89◦ (0.96)◦ 2.34◦

Shoulder protraction-retraction
passive 3.59◦ [-3.15◦,10.33◦] 0.85 − 0.77 [0.67,0.82] 4.23◦ (0.88)◦ 2.62◦

active-abdominal 1.52◦ [-7.16◦,10.20◦] 0.47 − 0.45 [0.32,0.56] 3.40◦ (1.08)◦ 1.64◦
active-bilateral 2.80◦ [-9.53◦,15.13◦] 0.59 − 0.64 [0.54,0.72] 5.25◦ (1.54)◦ 1.73◦

Shoulder angle of elevation
passive -16.03◦ [-36.99◦,4.92◦] 1.43 0.85 [0.65,0.90] 0.99 [0.98,0.99] 15.94◦ (2.62)◦ 9.69◦

active-abdominal -4.85◦ [-16.00◦,6.30◦] 1.14 0.96 [0.93,0.97] >0.99 6.27◦ (1.08)◦ 7.67◦
active-bilateral -6.32◦ [-17.61◦,4.96◦] 1.09 0.94 [0.88,0.97] >0.99 7.64◦ (1.01)◦ 8.90◦

Shoulder plane of elevation
passive 2.90◦ [-14.60◦,20.41◦] 1.03 0.96 [0.92,1.00] >0.99 6.55◦ (2.30)◦ 5.67◦

active-abdominal 4.15◦ [-13.16◦,21.47◦] 1.12 0.90 [0.81,0.98] >0.99 7.56◦ (2.06)◦ 6.14◦
active-bilateral 2.21◦ [-15.26◦,19.68◦] 1.13 0.95 [0.78,0.97] >0.99 7.43◦ (1.71)◦ 6.51◦

Elbow flexion
passive 0.43◦ [-6.88◦,7.75◦] 1.07 >0.99 >0.99 2.31◦ (0.46)◦ 3.69◦

active-abdominal -1.88◦ [-9.31◦,5.55◦] 1.10 >0.99 >0.99 2.91◦ (0.69)◦ 8.12◦
active-bilateral 0.73◦ [-15.60◦,17.06◦] 1.10 0.98 [0.95,1.00] >0.99 6.04◦ (1.83)◦ 7.70◦

Forearm pronation-supination
passive -3.91◦ [-9.02◦,1.20◦] 1.05 >0.99 >0.99 3.93◦ (1.31)◦ 6.51◦

active-abdominal -1.32◦ [-6.04◦,3.40◦] 1.04 >0.99 >0.99 2.10◦ (0.70)◦ 10.00◦
active-bilateral -2.41◦ [-9.88◦,5.06◦] 1.03 >0.99 >0.99 3.65◦ (1.22)◦ 13.29◦

CI: 95% Confidence Interval, SE: Standard Error, IQR: Interquartile Range (25th to 75th percentile), df: error degrees of freedom,
r(df): Correlation coefficient (rmcorr). Missing CMC values indicate complex number.

agreement, as indicated by the CMCip IQR. This is also
reflected in terms of a wider LoA and slope distant from one as
well as the time-series data. The shoulder girdle angles showed
high discrepancies, with complex CMCip values suggesting
waveforms dissimilarity, and also demonstrated by large LoAs,
slopes far from one, and high dispersion of time-series data.

The observed discrepancies particularly in the shoulder
angles, motivated a post-hoc analysis to investigate the asso-
ciation of the discrepancies with relative movements between
robot and user. To evaluate the contribution of this relative
movement to the observed discrepancies, we fit a linear model
considering these discrepancies as an output and the extracted
3D relative translations and rotations of humerus, acromion,
and chest as inputs or predictors. Since we do not have a
prior knowledge of the inter-correlation between the inputs
and their association with the output, we adopted a step-wise
regression framework to obtain a model that minimizes errors
and redundancies. In this framework, predictors are iteratively
evaluated and, starting from zero, added to the model if they
significantly contribute to the output’s variability indicated
by the R2. We chose to only add elements that increase
the R2 by at least 0.001. Even though we placed markers
following a protocol, placement differences across participants
are unavoidable. Furthermore, the reactive forces that lead to
relative movements change for different motions and condi-
tions, particularly between passive and active performances.
Therefore, we ran the step-wise regression for each participant,
motion, and condition, and we present the evolution of the
R2 of each resulting model as a function of the predictors
in Fig. 3. This result shows that almost 100% of the output
variability is related to the inputs variability.

Mocap markers are placed on deformable skin resulting
in a source of error [38]. For instance, the humerus’s rigid
body was placed between the deltoid and biceps, and con-

traction of these muscles would likely result in soft-tissue
deformations in the upper-arm. These types of deformations
could explain the association between relative movement of
the humerus and discrepancies in elbow flexion and forearm
pronation-supination. Shoulder joint and humerus are part of
the same kinematic link; therefore, distance variations between
acromion’s and humerus’s rigid body imply relative translation
between two components of the same kinematic link. This
translation could be caused by deformations of the rigid bod-
ies, weak adhesion to the skin, or soft-tissue deformation, all
common challenges encountered in mocap marker placement.
We will use the term artifacts to describe all the possible
causes for the relative translation between acromion’s and
humerus’s rigid body. To evaluate the contribution of these ar-
tifacts to the total relative movement, we ran a linear regression
to fit a model that takes distance variation between acromion’s
and humerus’s rigid bodies as covariates and distance variation
between humerus’ and robot’s rigid body as the dependent
variable. After visually inspecting the data, we concluded that
this relationship can be fit to a quadratic curve. We obtained a
model for each movement and condition, and the resulting fit
(R2) of each case are depicted in Fig. 4. Since body features
and marker placement vary across participants, the amount
of artifacts, and consequently, the effect on the total relative
movement, is expected to vary across participants.

IV. DISCUSSION

We characterized agreement between kinematic estimations
using robot sensor and mocap data and we found excellent
degree of agreement (CMCip>0.95) between robot and mo-
cap estimations of forearm pronation-supination and elbow
flexion. We found good to excellent degrees of agreement
(CMCip>0.85) in the shoulder angle and plane of elevation
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Association between relative movement and angle discrepancies represented by variance accounted for (R2). Shaded areas separate relative movement
in the humerus (red), chest (blue), and shoulder (green). Curves represent the change in R2 with the addition of each predictor in the linear model. Curves
are associated with a single participant and each color refers to a different participant (nine total), and each row represents one condition. The condition ”1”
represents a linear function consisting of just a constant value.

Fig. 4. Association between artifacts and relative movement of the humerus
represented by R2. Each bar represents one participant in a specific condition
and each color refers to a different participant (nine total).

estimations, with the exception of passive condition in shoul-
der angle of elevation that exhibited instances with moderate
degree of agreement (0.65<CMCip<0.75). Finally, results
fail to show agreement in the shoulder elevation-depression
and protraction-retraction estimations, which exhibited com-
plex CMCip values likely associated with the limited ROM
and high dispersion. We did not observe clear differences be-
tween the two types of trunk restraint used in the experiments
(active-abdominal and active-bilateral cases).

We found excellent positive correlation (r>0.9) between
Harmony’s estimation of upper-extremity motions to mocap

estimations for most cases, suggesting good reliability of the
calculated slope values. Values of CMCm and CMCr for
the four DOFs targeted by the experimental tasks indicate
excellent (>0.95) intra-subject repeatability. This suggests that
MDC values are likely associated with measurement- rather
than performance- variability. CMCr also exhibits very good
to excellent (>0.85) repeatability for shoulder girdle angles.

During the experiments the participant’s arm is attached to
the robot at upper-arm and forearm, resulting in a reliable force
transmission to the elbow and wrist. Therefore, we expected
a high degree of agreement in elbow flexion and forearm
pronation-supination. That was indicated by CMCip values
and confirmed by average discrepancies and RMSD values,
all falling under the MDCs, narrower LoAs with a total range
of approximately 15◦, and slopes close to one as shown in
Table III. However, we observed higher discrepancies in elbow
flexion estimation in the active-bilateral condition (depicted in
Fig. 2e). The Bland-Altman plot reveals a constant discrepancy
offset that varies across participants, and this resulted in larger
LoA and RMSD values. Although LoAs are larger than MDCs
in most cases, these limits are conservative in the presence of
a linear trend between discrepancy and average angle, which
could be confirmed in most cases in Fig. 2.

Given the complexity of the shoulder joint and the indirect
force transmission, we expected a lower degree of agreement
between robot and mocap in shoulder angle and plane of
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elevation. Systematic biases are consistently present in both of
these angles as shown in Figs. 2c and 2d. This resulted in LoAs
and RMSD values that are both larger than the movement vari-
ability represented by the MDCs. In this case, LoAs are highly
influenced by the different replacedbiasesoffsets demonstrated
by each subject as observed in Fig. 2. On the other hand, slopes
were close to one with excellent positive correlation (r>0.9).
Therefore we concluded that shoulder angles estimated by
the robot demonstrated low accuracy in absolute terms, but
accurate proportional association that indicates ability to cap-
ture differential quantities such as velocity. This suggests that
although the robot’s responsiveness is comparable to mocap’s
for shoulder angles, estimated angles might not accurately
match absolute values of mocap’s estimations.

The post-hoc relative movement analysis revealed high
association between relative movement (as represented by
relative translations and rotations of the humerus, acromion,
and chest) and discrepancies, as shown in Fig. 3. An inter-
esting observation in Fig. 3 is that discrepancies in shoulder
elevation-depression, protraction-retraction, angle and plane
of elevation were associated with chest and humerus rela-
tive movement. Discrepancies in elbow flexion and forearm
pronation-supination were almost exclusively associated with
humerus relative movement. This was somewhat unexpected,
since participants were instructed to maintain a static trunk and
upper-arm posture during elbow flexion-extension and forearm
axial rotation.

We performed post-hoc analysis of the association between
artifacts and relative movements to investigate if the un-
expected discrepancies could be associated with rigid body
deformation, soft-tissue deformation, or weak marker adhesion
to the skin. We found high association between our artifact
metric and relative motion in the shoulder flexion-extension
and horizontal abduction-adduction movements. We found a
lower association with elbow flexion-extension and forearm
axial rotation movements. This is consistent with previously
reported result in the literature indicating that soft tissue
artifacts is one of the major problems in the use of mocap
for the study of upper-extremity motion [38].

The high association between relative movement and es-
timation discrepancies suggest that we need to constrain the
user’s movement in the robot. However, this must be balanced
with other important factors such as comfort, allowance of
natural motion, safety, and ease of don-doff. Furthermore, the
association between artifacts and relative movement suggests
that even the benchmark sensing modality has limitations and
may not be considered as a “ground truth” when evaluating
accuracy of exoskeleton devices. The use of bone implants
would solve this impasse, but is a challenging method to
apply to in vivo human-subject experimental procedures to
investigate active movements. A possible compromise would
be the combination of the two measurement systems in a
Bayesian estimation method such as the Kalman Filter, which
uses prior knowledge of the system’s dynamics to estimate its
state and robust to the inherent measurement uncertainty [39].

Based on the reported results, Harmony is an accurate tool
to measure elbow flexion and forearm pronation-supination. It
is as sensitive as mocap for the measurement of changes in

shoulder angles, but it exhibits offsets that may be associated
with the limitations in the mocap system. Further studies are
needed to verify if the offsets are caused by untractable relative
movements or mocap artifacts. Finally, Harmony is capable
of providing estimations of shoulder girdle angles (shoulder
elevation-depression and protraction-retraction) which is a
novel feature of this rehabilitation robot. However, as com-
pared to mocap the accuracy of the kinematic estimations
is low and the variability is high, both of which might
be associated with undesirable relative movements. Further
research is necessary to investigate if this can be improved
with a better trunk constraint. Goniometers are traditionally
adopted to measure joint angles in clinical practice. Reliability
studies have reported MDC for goniometers varying between
8.3◦ and 19.4◦ for forearm pronation-supination [40], between
5.5◦ and 13.9◦ for elbow flexion [40], and between 3◦ and
14◦ for shoulder flexion [41]. The LoAs reported in this study
are comparable with goniometry MDC values for distal joints,
which suggests that Harmony’s measurement discrepancy with
respect to mocap for elbow and forearm angles is within
acceptable ranges for clinical practice. However, discrepancy
for shoulder angles are larger than the acceptable ranges. This
can be attributed in the most part to systematic differences that
might be associated with limitations of the adopted benchmark
modality. In spite of large shoulder angles discrepancy, Har-
mony offers the advantage of continuously measuring multiple
DOFs during dynamic tasks.

The accuracy observed for Harmony cannot be generalized
for all upper-extremity exoskeletons, but the discrepancies
observed suggest that similar comparisons should be followed
to characterize their accuracy. Although some studies rely on
the robot’s anatomical measurements [42], such an analysis
is under-represented in the literature, and is mostly limited to
forearm and wrist [43]. Attempts to predict established clinical
outcomes with anatomical joint angles [42] have found low
correlation with shoulder angles, which could be related to
low measurement accuracy.

V. CONCLUSION

The goal of this work was to characterize the Harmony ex-
oskeleton’s ability to accurately measure anatomical joint an-
gles, specifically shoulder girdle angles (elevation-depression
and protraction-retraction), shoulder angles (angle and plane
of elevation), elbow flexion, and forearm pronation-supination.
We evaluated the agreement between upper-extremity joint
angles estimated from the robot’s sensor data and mocap data.
The results confirm that the Harmony exoskeleton is capable
of providing accurate measurements of arm and shoulder
angles given a properly constrained trunk and a well-adjusted,
reasonably rigid interface. This establishes the basis to use
robotic exoskeletons not only as a tool to deliver therapy,
but also to reliably monitor progress, potentially increasing
treatment efficiency.
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