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Abstract— In this paper, we address two of the most impor-
tant challenges in development and control of assistive hand
orthosis. First, supported by experimental results, we present a
method to determine an optimal set of grasping poses, essential
for grasping daily objects. Second, we present a method for
finding the minimal number of surface EMG sensors and their
locations to carry out EMG-based intention recognition and to
control the assistive device by differentiating between the hand
poses.

I. INTRODUCTION

Approximately 45% of SCI patients have difficulties in
fulfillment of activities of daily living (ADL) owing to
insufficient hand function, despite having residual function
in arms and shoulders [1]. Assistive hand devices have been
developed to help SCI patients with their daily activities [2].
Active assistive devices have the advantage of enhancing
patients’ grasping or opening force and acting based on user’s
intention [3], [4], [1].

Intention recognition methods based on Electromyography
(EMG) signals, extracted from user’s muscles are commonly
used methods in controlling active orthoses due to several
advantages. Firstly, employing task related muscles makes
the operation of the device more intuitive and reduces the
training time. Secondly, operation of the assistive device is
not disturbed by the movements of other body parts. Several
user interfaces of current active assistive devices sense the
movements of other body parts such as tongue [5], neck [6],
wrist [7], or receive voice commands to recognize user’s
intention [8]. In order to successfully use these interfaces and
operate the assistive device, the user has to stop speech or
head or wrist movements. In addidtion, using the movements
of other body parts may restrict the scope of available tasks.
For instance, using a hand orthosis that is operated by the
wrist motion, a user may not be able to accomplish a task
that needs simultaneous movement of hand and wrist (e.g,
opening a jar).

Considering advantages of Electromyography, researchers
have developed EMG-driven active hand orthoses for patients
with neuromuscular disorders and spinal cord injury. Thus
far, the operation of these devices has been performed only
with one variable. Benjuya and Kenny [3] were the first team
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Fig. 1. Maestro has three actuated fingers and 8 DoF. It can provide various
hand poses that are required in ADL as an assistive orthosis.

to develop an EMG-driven 1-DoF assistive finger exoskele-
ton. Their device had been tested on one subject with brachial
plexus and two C6 level SCI subjects according to American
Spinal Injury Association (ASIA) impairment scale. The
article reports the enthusiasm of patients while using the
orthosis. Dicicco et al. [4] developed a 1-DoF orthosis for
assisting pinching motion of SCI patients. The paper reported
that while using the orthosis a C5/C7 SCI subject was able
to grasp a roll of tape, rubber ball, hockey puck and he was
unable to grasp a tooth brush and a deck of cards. Zhao
et al. [9] recently presented a soft hand orthosis which is
capable of increasing grasping force proportional to a one-
dimensional EMG-related variable. The paper demonstrates
potential of soft actuators in hand orthoses but does not
show experimental results with patients with neurological
disorders. Since, all the previous work mentioned have
controlled a device with only a one-dimensional variable,
EMG signals have been used, in a one-dimensional threshold
control or proportional control. However, in this way, the user
would be able to grasp only a limited number of objects.

Many grasping poses are used by humans in daily ac-
tivities. Bullock et al. [10] reported that humans use 34
different hand poses for grasping objects, and Sollerman [11]
selected the eight most frequent hand grips for grasping
objects required in ADL. In order to grasp daily objects
with various shapes and properties, a hand orthosis needs
to generate various hand poses depending on the object.

On the other hand, differentiating between numerous hand



poses besides recognizing the user intent, especially with
noisy nature of EMG signals is also a great challenge.
Moreover, Surface EMG (sEMG) sensors are not able to
monitor activities of individual muscles. Consequently, sim-
ilar muscle activity patterns are measured while grasping
different objects requiring fairly different hand poses, which
makes the EMG-based operation difficult. Therefore, it is
important to choose a suitable set of hand poses that not
only meet the grasping requirements in ADL, but also are
differentiable using EMG signals.

One promising solution to overcome the problem with
recognizing the grasping mode is to take advantage of
compliant actuators in operation of the hand orthosis. In fact,
humans actively take advantage of compliance in digit joints.
While grasping an object, the hand poses are determined not
only by the kinematics control of digit joints, but also by the
stiffness of digit joints and the shape of object [12]. If a hand
orthosis has compliance in actuation, a subject wearing the
orthosis may grasp many different objects without generating
specific hand poses for each object (Fig. 4). Furthermore,
this idea may abate the classification of EMG signals, as
the classification algorithm would not need to classify EMG
signals into many different grasping modes. The assistive
device used in this study has compliant actuation enabling
the use of fewer target hand poses [13], [14], [15].

In our previous study [13], the development of a hand
exoskeleton for assistance of SCI patients was presented. In
this study, we make the following two general contributions.
First, we present a methodology to determine a minimal set
of target hand poses for compliant assistive hand orthoses
that is sufficient for grasping daily objects. Second, we
present a method for determining the optimal set and location
of sEMG sensors for EMG-based intention recognition to
classify user’s intent into one of the essential target hand
poses.

The paper is structured as follows. In section II, we
demonstrate the most-used hand poses in ADL according to
literature [11], [10]. Then we present a method to determine
a minimal set of essential hand poses required to grasp daily
objects using a compliant hand exoskeleton. In section III,
we present how we find the optimal locations of sEMG
sensors for SCI patients to generate the required command
for differentiating between the essential hand poses. We
conduct experiments with different number of sensors and
combinations. Finally, we determine a minimal set of sensor
locations to reliably control the assistive device. Section
IV includes a conclusion of this study, and potential for
application of the results in designing and controlling hand
assistive orthoses.

II. TARGET HAND POSES

In this section, we present how the target hand poses of the
compliant hand orthosis were determined. The target hand
pose is defined as the hand pose generated by a hand orthosis
when the hand is relaxed and does not interact with an
external object. While using a compliant hand exoskeleton,
the actual hand pose might be different from the commanded

(a) Transverse volar grip (b) Spherical volar grip

(c) Lateral pinch (d) Diagonal volar grip

(e) Extension grip (f) Tripod grip

(g) Five finger pinch (h) Pulp pinch

Fig. 2. Sollerman et al. selected eight most frequently used grips in
ADL [11].

target hand pose, based on interaction with the object and
the amount of force user generates on their digits. Before
explaining the detailed process of answering the question, we
first present the background information that will be used,
including an overview of the assistive device and definition
of ADL based on a study by Sollerman et al. [11].

A. Hand Exoskeleton: Maestro

The exoskeleton used in this study is called Maestro
and it has advantages to serve as an active assistive hand
orthosis for our purpose. Maestro [13] consists of three
finger modules for index finger, middle finger and thumb
(Fig. 1). It has four DoF for the thumb and four DoF for the
index [14] and middle fingers in total. Therefore, it is capable
of providing different hand poses used in ADL. Also, it takes
advantage of compliant actuation by implementing series
elastic elements between an electric motor and exoskeleton
joints [13], [14], [15], allowing for the grasp of objects of
different shapes by using only a limited number of hand
poses (Fig. 4). It is light and comfortable and it preserves
the sensation on finger tips for interaction with objects. In
this study, the orthosis is controlled by sEMG signals from
the user’s muscles (Fig. 3).



B. Representative Objects for ADL

The main goal of an assistive hand orthosis for SCI, is to
assist the subjects to perform hand functions in ADL. The
first step is to define ADL systematically. The hand functions
of ADL has been studied by several researchers [10], [11],
[16]. Among those, the study conducted by Sollerman et
al. [11], is one of the most extensive studies that focused on
the essential hand functions of tetraplegic patients in ADL.
Also, the study provides a systematic evaluation method for
hand function for the SCI subjects.

Sollerman and Ejeskär [11] selected the most frequently
used eight grips in ADL which are transverse volar grip,
spherical volar grip, lateral pinch, diagonal volar grip, ex-
tension grip, tripod grip, five finger pinch, and pulp pinch
as shown in Fig. 2. Then they selected a set of objects
that represent objects used in ADL and need the eight grips
mentioned.

Among these objects, we excluded several objects that
required the exact same grips and we choose a set of 15
objects that required the eight essential grips of ADL. We
selected the grasping of following objects as representatives
of grasps in ADL: key, wooden block, iron, screw driver,
nuts, jar lid, knife, socks, pen, paper, paper clip, telephone,
door handle, pure-pak, and cup. Grasping of coins and a
water jug is excluded because they required similar grips as
a paper clip and an iron, respectively.

C. Methodology for Determining Minimal Set of Target
Hand Poses

In this section, we present a method to find a minimal set
of target hand poses for an assistive orthosis which would be
capable of grasping the objects listed in the previous section.
We designed an experiment to test and verify successful
grasping of the objects by the minimal set of target hand
poses. The basic idea of the experiment is that a researcher
increases the number of target hand poses or replaces a target
hand pose with another until the subject is able to grasp all 15
objects using the correct grip mentioned in [11]. Two healthy
subjects and one SCI subject participated in the experiment,
and the results were consistent through all subjects.

The experiment was conducted through the following
protocol. First, Maestro is adjusted to optimally fit the given
participant. A researcher adjusts the link lengths until the
maximum range of motion is achieved while ensuring the
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Fig. 3. Signal flow of the muscle activities to the target hand poses of
the exoskeleton. The EMG signals are measured and amplified by surface
EMG sensors, the amplified signal is post-processed with several filters and
classified into a target hand pose of the orthosis with an Artificial neural
network classifier.

comfort. Second, the subject is asked to relax their hand.
This ensures that grasping an object is performed solely by
Maestro. Third, a researcher places an object at a comfortable
location within reach of the subject. This eliminates effects
from external environments. Fourth, using a computer pro-
gram a researcher generates a target hand pose in Maestro
which is desired to grasp the object. Fifth, the subject with
Maestro grasps the object. The subject is allowed to move
their arm and shoulder to help his/her hand grasp the object.
Sixth, a researcher judges if the subject grasps the object,
without dropping and using a correct grip according to [11].

As a first trial, we tried two target hand poses that included
transverse volar grip and extension. The results show that,
the subjects could not make all hand grips which require
thumb adduction (e.g., key pinching). In the second trial, we
added lateral pinch to transversal volar grip and extension.
With this addition, we enabled the subjects to grasp many
objects requiring thumb adduction such as a key and screw
driver, but still it was insufficient for grasping flat or small
objects such as a nut, paper clip, or piece of paper. Lastly,
we added extension grip into the previous set, and subjects
were able to grasp all 15 objects listed in [11]. Fig. 4 shows
the result of an experiment with a C5/C7 incomplete SCI
subject who is barely able to generate flexion force on his
index and middle fingers.

The experiment results show that a subject wearing a
compliant hand orthosis is able to grasp objects in ADL
with the correct grip, using only four hand poses (Fig. 4).
The four hand poses include transverse volar grip, lateral
pinch, extension grip, and extension, which is a significantly
smaller number than the number of hand grips reported in
previous grasp studies ( [10], [11], [16]).

D. Discussion on Target Hand Poses with a Compliant
Exoskeleton

We based our study on previous literature to determine ob-
jects and grasps that represent ADL grasping needs. Results
of a study by Sollerman et al. [11] were used to understand
the most common grasps poses used by humans during daily
activities. Then we selected a number of objects used in [11]
followed by feedback from SCI subjects in [13] to represent
daily objects. Compliance of the assistive orthosis allowed us
to further categorize the essential hand poses used in ADL to
four major hand poses. Experimental results showed that the
four hand poses enabled subjects to grasp all the objects
selected from [11] (Fig. 4). However, there are several
discussion points about the grasping experiment results.

First, since the compliance of the actuation system allows
for the high flexibility in target hand poses, the selected set
of hand poses might not be a unique solution. A variation of
the selected hand poses can also make an acceptable set of
target hand poses for controlling the orthosis. However, the
number of the required hand poses to grasp all objects may
not be reduced further because as shown in [10], there is a
clear requirement of thumb abduction and adduction motion
depending on the object’s shape. The position of the fingers is
also highly dependent upon the object’s shape which justifies



Fig. 4. A C5/C7 incomplete SCI subject, who is barely able to generate flexion of index and middle fingers, was able to grasp 15 objects listed in
Sollerman hand function test. In the experiment, only four target hand poses of Maestro were used.

having at least two target finger poses at thumb abduction,
namely PIP flexion and PIP extension.

Another point we want to emphasize is the difference
between grasping an object and performing a task with
the object. In this study, we conducted a grasping test in
which a subject was able to hold the objects with correct
grip and a researcher determined the success of the grasp.
Although subjects in this experiment were able to grasp
all 15 objects listed in [11] using the four target hand
poses, the success in grasping does not guarantee the subject
would be able to perform a task with the object. Indeed, the
successful fulfillment of a task is achieved only when many
complex components meet sufficient conditions including
dexterous shoulder and arm function, adequate grasping
force, creativity in performing the task, and psychological
effects like motivation. Improvement and assessment of the
overall hand function of SCI subjects in the task performance
has been the focus of a previous study [13]. Furthermore,
grasping performance can be improved by implementing
active compliance control as well as proportional grasping
force control.

In summary, determining the essential grasping poses
required in ADL, is a key concern in developing assis-
tive hand orthoses, since the orthosis is required to help
patients accomplish ADL. Simultaneously, classification of
different hand poses based on intention recognition methods
(e.g. EMG, EEG) or even mechanical or speech controlled
methods, gets increasingly harder by increasing the num-
ber of hand poses. In particular, for sEMG-based intention
recognition, by increasing the number of target hand poses,
similar patterns might be measured for comparable grasps
and classification will get more difficult. Therefore, it is
important to discern the minimal set of target hand poses for
ADL as it will also be beneficial in increasing the success
ratio of EMG classification.

III. LOCATION OF SURFACE EMG SENSORS

In the previous section, we found a minimal set of required
target hand poses in ADL for a compliant assistive hand

TABLE I
SIX MUSCLE CANDIDATES TO BE MONITORED BY SEMG SENSORS

Muscle No. Muscle Name Innervation

1 Flexor digitorum
superficialis

Median nerve
(C7, C8 and T1)

2 Extensor digitorum Posterior interosseous nerve
(C7 and C8)

3 Flexor pollicis brevis Recurrent branch of
median nerve (C8 and T1)

4 Flexor carpi ulnaris Ulnar nerve (C7 and C8)

5 Extensor carpi ulnaris Posterior interosseous nerve
(C7 and C8)

6 Flexor pollicis longus Anterior interosseous nerve
from median nerve (C8 and T1)

orthosis. In this section we present a method to find the
optimal locations to attach the sEMG sensors to reliably carry
out intention recognition in order to categorize user’s intent
into one of the four hand poses.

A. Choosing Candidate Sensor Locations

For determining the locations of sEMG sensors, several
points need to be considered. First, the muscles monitored
by EMG sensors need to be relevant with the four target hand
poses. This reduces the training time and makes operation of
the device more intuitive. Second, the innervation of muscles
from spinal cord need to be considered. For instance, the
muscles innervated by upper parts of spinal cord are more
suitable because, SCI patients have less function in muscles
innervated from lower parts of spinal cord, for instance,
intrinsic hand muscles. Third, the target muscles need to be
located close to the skin. Otherwise, the signals would be
polluted by external electric noise and interfered by signals
from other muscles. Fourth, the number of EMG sensors
need to be minimized. Using numerous sensors may provide
a considerable amount of information, but simultaneously
the application with the many sensors is not feasible in



Fig. 5. Six sEMG sensors were attached on a subject’s forearm and
palm to measure the muscle signals of 1) Flexor digitorum superficialis,
2) Extensor digitorum, 3) Flexor pollicis brevis, 4) Flexor carpi ulnaris, 5)
Extensor carpi ulnaris, and 6) Flexor pollicis longus.

reality. For example, Liu et al [17] performed a successful
EMG-signal classification with 57 sEMG sensors for SCI
subjects. The study showed potential of using sEMG sensors
to understand the intention of SCI patients. However, it
is difficult to directly implement this sensor configuration
in ADL due to high cost and long setting and calibration
time. We also consulted with an occupational therapist to
understand common muscle patterns of incomplete SCI and
available muscles of SCI patients with limited hand function.

Based on the above factors, we selected six candidates of
sensor locations to be monitored. We picked target muscles
based on relevance to task and muscle innervation. Then
we tested the pattern recognition algorithm with different
combinations of located sensors to find out the minimal
number and location of EMG sensors for achieving reliable
control.

The muscles are listed in Table. I. Flexor digitorum
superficialis and Flexor carpi ulnaris are selected mainly
for detecting the finger motion. Extensor digitorum and
Extensor carpi ulnaris are selected mainly for finger and
thumb extension. Flexor pollicis brevis and Flexor pollicis
longus are selected to detect thumb abduction and flexion.
Because the muscle and tendon configuration is correlated
with multiple digit joint motions, it is difficult to build a one-
to-one match between a joint motion and a muscle. Also due
to the characteristics of sEMG sensors, each sensor measures
not only a targeted muscle activity but also the activities of
other muscles located around that muscle.

Based on these six muscles, we selected six candidate
locations for sEMG sensors as shown in Fig. 5. The numbers
in the figure correspond to the muscle numbers of Table. I.
The quality of the measured EMG signals is crucially de-
pendent on choosing the correct location of sEMG sensors.
The occupational therapist assisted us in locating the selected
muscle bellies by palpating patient’s forearm and palm.
Multiple small muscles exist together in the small region of
the third sensor (palm), so the third sensor measures activities
of Abductor pollicis brevis in addition to the target muscle,
Flexor pollicis brevis. However, this was not a problem in
the experiment since our goal was to determine user’s intent,

Fig. 6. Maximum voluntary isometric contraction of muscles is measured
with a custom made splint. Because SCI patients are not capable of moving
their hands, we developed a custom splint to facilitate the measurement.
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Fig. 7. Maximum EMG-classification success ratios are shown for the three
subjects versus different number of sensors. Subject 1 and 2 are healthy
subjects and subject 3 is a C5/C7 SCI patient. Success ratio does not vary
significantly by increasing sensor numbers after 3 sensors.

not to monitor the single muscle activities.

B. Methodology for Determining Suitable Sensor Locations

We performed an experiment with the following protocol
to determine the optimal set of SEMG sensor locations that
provide sufficient success ratio for EMG classification. First,
six Delsys TrignoTM Wireless EMG sensors are attached
on subject’s right forearm and palm (Fig. 5).Then subject’s
hand is secured in a hand splint and maximum voluntary
contraction (MVC) is measured by asking him to perform
maximum finger flexion, finger extension and thumb flexion,
while muscle activities are being displayed to the subject on
a computer screen (Fig. 6). The MVCs measured in this part
are used to normalize EMG data in post processing.

For training the EMG classification algorithm, subjects
are asked to perform three trials that consist of five tasks
interacting with objects including holding a jar (transverse
volar grip), holding a key (lateral pinch), holding a plate
(extension grip) (Fig. 2), relaxing the hand and extension of
fingers and thumb. Subjects are asked to perform each grasp
mode for 10 seconds with 10 seconds of relaxation between
grasps. To eliminate the effects of transitioning between
grasp modes, the two seconds at the beginning and end of
each grasp is disregarded and only the midmost 6 seconds
of EMG data is used to train classification algorithm. It is
important to note that, relaxing of the hand is also considered
as one class in EMG classification, in order to help users
operate the device without having to exert force throughout
the entire grasping motion [13].

EMG data are measured and post processed using the
following method [4], [13]. First, the offset is removed
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Fig. 8. Success ratios for EMG-classification are shown for four different
combinations of sensor locations. Sensor numbers are according to Fig. 5.
Subject 1 and subject 2 are healthy subjects and subject 3 is a C5/C7 SCI
patient.

and signal is rectified to obtain magnitude values. Then a
third order Butterworth low pass filter (cutoff frequency 4
Hz) is applied to produce linear envelope representation of
the signal. Next, the signal is normalized to the measured
MVC values. This signal is then used as the input to the
classification program. According to these signals user’s
intention is classified into one of five modes, including the
four target hand poses and relaxed pose.

From the post-processed EMG data, we created training
data sets sampled at 20 Hz to analyze the classification
success rates with respect to the sensor configurations. First,
we created a total of 60 configurations which are all possible
combinations among the six sensors. Second, we created 60
training data sets consisting of the EMG data from the 60
configurations of sensor combinations and the output labels.
Third, the 60 classification models with the training data sets
were trained. The classification model is developed by an
artificial neural network (ANN) algorithm. We selected two-
layer feed-forward network with sigmoid hidden softmax
output neurons. Fourth, the ANN models were trained with
a scaled conjugate gradient back-propagation method. 70%
of data were used for training, 15% for validation, and
15% for testing to calculate the success rate of the sensor
configuration.

The results of the classified success rates with respect
to the sensor configurations have been analyzed. We first
selected the highest success rate in the data sets in which
the same number of sensors have been used (Fig. 7).

We can see that, by increasing the total sensor number,
the success ratio is improved and then plateaued after three
sensors (Fig. 7). Therefore, we decided to examine the three
sensor configurations more closely (Fig. 8).

Among the three sensor configuration, sensor combination
(1,2,3) resulted the highest success rates for two cases,
and more sensor combinations (1,2,4), (1,2,6), (2,3,4) also
resulted in comparably high success rates as shown in Fig. 8.

C. Selecting an Optimal Set of Sensor Locations

Based on the results from last part, we aim to select the
suitable set of sensor locations to accomplish intention recog-
nition of the assistive orthosis. There are several discussion
points about previous results.

First, the sets of three-sensor combinations with highest
success rate were slightly different between subjects. Among
the six initial sensor location candidates, we intentionally
chose redundant sensor locations for each of the basic
finger movements. For instance, sensor 4 monitors the Flexor
Carpi Ulnaris, which is responsible for finger flexion similar
to Flexor digitorum Superficialis. However, Flexor Carpi
Ulnaris is also responsible for wrist flexion. Since, we
wanted to avoid coupling of finger and wrist motion while
controlling the orthosis, we decided to choose sensor location
combination (1,2,3) for extracting sEMG signals for the
purpose of determining user’s intention among grasp modes.

Secondly, it is important to note that although muscles
used in this study have been selected based on hand anatomy
and verified through an experiment with two healthy subjects
and an SCI subject, they might not be always available
in different SCI patients depending on their injury. Target
subjects for this method are SCI patients with injury levels
between C5 and C8. Nevertheless, there might be patients
who do not have sufficient muscle activity in these specific
muscle locations for the purpose of intention recognition.
In practice, researchers may need to customize the muscle
location selection to fit each SCI subject’s condition. For SCI
patients with severer injuries, sEMG sensors can be moved
to muscles that are innervated by higher parts of spinal cord
(e.g. biceps, triceps). However, the operation of the assistive
device would not be as intuitive compared to using the task-
related muscles.

Finally, success ratio range for EMG hand pose cate-
gorization among four hand poses, based on the selected
muscles, is reported to be around 97% for healthy subjects
and 90% for the SCI subject (Fig. 8). One might argue that
this success ratio can still cause uncertainty and hazards in
practice. However, by implementing the appropriate control
method in controlling the assistive orthosis, this success ratio
can be improved in operation of the device. For instance,
in Maestro [13], the assistive hand exoskeleton used in this
study, a stochastic control method is used. EMG signals are
monitored within a moving time window and the commanded
target hand pose for the device will not execute unless the
frequency of the new target hand pose reaches a certain
threshold. In addition, in order to eliminate uncertainties
caused by fatigue, device can be controlled such that the
grasping mode does not change if the subject relaxes his
muscles after switching to one hand pose.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we presented two methodologies to ad-
dress two of the important challenges in developing and
controlling an active assistive orthosis. First method is for
determining a minimal set of target hand poses that are
essential in ADL for a compliant assistive hand orthosis. We
evaluated this selection using objects from a standardized
hand function test based on ADL. Second, we present
a methodology for determining an optimal set of sEMG
sensor locations required for controlling grasping poses of
the assistive hand orthosis. Based on experimental results



and anatomy considerations, we selected the minimal set
of three sEMG sensors corresponding to Flexor digitorum
superficialis, Extensor digitorum and Flexor pollicis brevis
to determine the grasping pose. We demonstrated that using
EMG signals extracted form these muscles, the system is
able to differentiate between the four chosen hand poses with
sufficient accuracy.

The outcomes of this study can be used as guidelines
for designing and controlling assistive devices. For instance,
results of grasping experiment demonstrate that abduc-
tion/adduction motion of thumb and flexion/extension motion
of thumb and fingers are essential in daily grasp activities.
Therefore, it is important to consider the availability and
active control of the movements of these degrees of freedom
for an assistive hand orthosis. Moreover, by taking advantage
of compliance in the design of hand exoskeletons, number
of essential target hand poses of the device can be reduced,
resulting in easier control of the device. Eventually, we show
that for a compliant hand orthosis, a suitable set of only four
hand poses is sufficient to grasp objects in ADL.

In addition, using the sEMG signals from task related
muscles makes the control of the device more intuitive and
easier for the user. Moreover, by increasing the number of
target hand poses, intention recognition by sEMG signals
becomes more difficult. In order to achieve a reliable control,
we used a pattern recognition algorithm, based on all possible
combinations of sensor locations to examine the success of
the EMG-based intention recognition method. We demon-
strated that the success ratio of intention recognition algo-
rithm reaches a plateau and does not improve significantly
by adding more sensors beyond a certain limit. Then we
selected the optimal combination of sensor locations, based
on experimental results and subject conditions, to provide a
reliable control. A similar practice can be used to determine
the minimal number of bio-signals required to control any
other active assistive device.
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