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Abstract— Robotic exoskeletons open up promising interven-
tions during post-stroke rehabilitation by assisting individuals
with sensorimotor impairments to complete therapy tasks.
These devices have the ability to provide variable assistance tai-
lored to individual-specific needs and, additionally, can measure
several parameters associated with the movement execution.
Metrics representative of movement quality are important
to guide individualized treatment. While robots can provide
data with high resolution, robustness, and consistency, the
delineation of the human contribution in the presence of the
kinematic guidance introduced by the robotic assistance is a
significant challenge. In this paper, we propose a method for
assessing voluntary effort from an individual fitted in an upper-
body exoskeleton called Harmony. The method separates the
active torques generated by the wearer from the effects caused
by unmodeled dynamics and passive neuromuscular properties
and involuntary forces. Preliminary results show that the effort
estimated using the proposed method is consistent with the
effort associated with muscle activity and is also sensitive to
different levels, indicating that it can reliably evaluate user’s
contribution to movement. This method has the potential to
serve as a high resolution assessment tool to monitor progress
of movement quality throughout the treatment and evaluate
motor recovery.

I. INTRODUCTION

Annually, 15 million people suffer a stroke around the
world [1], and it is the leading cause of long-term disability
in the US, leaving a substantial portion of the population with
permanent impairments. While traditional clinical interven-
tions [2] have historically seen some recovery of function
in the upper-limb, recent robotic interventions have achieved
outcomes better or equivalent to conventional therapies with
regards to motor function improvement [3], [4], [5].

For robotic therapies to exceed outcomes of conventional
therapies, robotic devices must provide 1) biomechanically
consistent force application tailored for individual-specific
needs and 2) high resolution sensing modalities. In thera-
peutic interventions for the upper-body, forces applied by
robotic devices must be in sync with the natural rhythm of
the shoulder girdle [6] to prevent serious shoulder injuries
[7], [8]. Despite the promise of robotic rehabilitation and
the importance of supporting the shoulder coordination, there
has been limited development of interventions that support
the coordinated movements in the shoulder complex [9],
[10], [11], [12]. The second need for high resolution sensing
arises from the shortcomings of the established clinical tests

This work is supported, in part, by the National Science Foundation,
TIRR Foundation, and CAPES (Brazil).

A. C. de Oliveira, K. Warburton, J. S. Sulzer, and A. D. Desh-
pande (corresponding author) are with the Department of Mechan-
ical Engineering, The University of Texas at Austin, Austin, TX,
USA (ana.oliveira, kevinwarburton)@utexas.edu,
(james.sulzer, ashish)@austin.utexas.edu

Fig. 1: Harmony, a bimanual upper-body exoskeleton designed to ac-
tively control 7 DOF: elevation-depression and protraction-retraction of the
shoulder girdle, abduction-adduction, flexion-extension, and medial-lateral
rotation of the shoulder, flexion-extension of the elbow.

for assessing motor recovery [13]. These tests are often
subjective and have a low resolution, which reduces the
ability to develop truly individualized interventions. Robots,
on the other hand, can provide standardized metrics to
assess movement quality with high resolution, robustness,
and consistency, and, in some cases, with high correlation
with clinical test scores [14].

To address these two needs, we developed the Harmony
exoskeleton [15] (Fig. 1). Designed for upper-body rehabili-
tation, Harmony is a bilateral device that can actively control
seven degrees-of-freedom (DOF) on each side of the body,
allowing for a wide range of motion (ROM). By actively
supporting the shoulder girdle rhythm [16], Harmony sup-
ports safe execution of overhead exercises diminishing risks
of shoulder impingement and pain. Harmony’s capabilities
for interaction are complemented by high resolution mea-
surement of position and interaction force, enabling novel,
high resolution measurement modalities.

Robotic assessment modality can provide clinicians with
high-resolution information that can guide individualized
treatment. For this purpose, information must be available
for as much of the session as possible. However, during ses-
sions, robots provide kinematic guidance to individuals with
moderate to severe motor impairments to change maladaptive
behaviors, which affects traditional measures of movement
quality based on kinematic metrics, like movement smooth-
ness [17], path length, and hand speed [14], for example.
Therefore, in order to evaluate the wearer’s movement quality
based on kinematic metrics, extra time out of regular sessions
is required to capture the kinematic features of the volitional
movement under minimal guidance. This reduces the amount
of therapy time in a session, potentially reducing efficacy and



increasing costs of the treatment, and also only provides a
limited dataset. Furthermore, the mechanical properties of the
robotic device might introduce biases to kinematic metrics,
even under minimal or no kinematic guidance [18].

Instead of kinematics, kinetic aspects of movement, such
as torques and forces, are available throughout the treatment
session, and are therefore a suitable target for develop-
ing robotic assessment metrics. One potential approach is
using surface electromyography (sEMG) sensors to mea-
sure muscle activity. It has been used to measure changes
in neuromuscular activity during the training course [19],
to measure voluntary effort during completion of differ-
ent tasks [20], or to quantify abnormal muscle synergies
[21]. However, these sensors are cumbersome and time-
consuming, rendering them unsuitable to be used in clinical
contexts. Other studies use data captured by the robot’s
sensors in a variety of ways to quantify movement qual-
ity and wearer’s contributions. It has been proposed that
abnormal performance in an end-effector type robot can
be quantified using force measurements in the end-effector
offset by forces measured during the same motions but
with no human volition contribution [22]. This method is
limited since it does not allow for any movement or robotic
assistance variability, and the motion is limited to a planar
surface, which simplifies the dynamic effects of the robot.
Another study [23] estimates the joint torques required to
move the arm of an individual wearing an exoskeleton-
type robot using a dynamic model representing the human
arm. By comparing the required forces with the actual
forces measured, the wearer’s contribution to the movement
can be determined. However, individuals with sensorimotor
impairments very often exhibit abnormal movement patterns
that can be caused by various reasons like exaggerated stretch
reflexes, increased muscle tone, and abnormal neural activity
[22], and this method cannot differentiate between wearer’s
volition and involuntary forces caused by abnormal patterns.
A Kalman Filter has also been proposed to do sensorless
force estimation of the external disturbances in a robotic
exoskeleton, which includes the wearer’s contributions to
the movement, in an implementation of an assist-as-needed
strategy that attempts to minimize the amount of guidance
provided by the robot [24]. However, this method cannot
distinguish between torques caused by unmodeled dynamics
from the wearer’s volitional efforts.

To address these limitations, we propose a method to
assess effort voluntarily generated by individuals fitted with
the Harmony exoskeleton. The method consists of estimating
the effects of unmodeled dynamics and torques associated
with passive and involuntary neuromuscular characteristics
using an artificial neural network, which are used to isolate
the wearer’s voluntary effort. We present preliminary results
to validate the method, comparing the estimation with the
effort associated with muscle activity recorded using sEMG
sensors during elbow flexion-extension. The identification
of voluntary effort in individual joints using the proposed
method might help unravel joint patterns and maladaptive
behaviors in individuals with sensorimotor impairments, and

can potentially be used as an assessment tool to monitor
progress of movement quality throughout treatment.

II. MATERIALS AND METHODS

A. The Harmony exoskeleton

The Harmony exoskeleton [15] is a bilateral device that
can actively control seven DOF in both arms, and has an
anatomical shoulder mechanism that can actively support the
full mobility of the shoulder. The exoskeleton is attached
to the wearer’s arm in the middle of the upper-arm and
on the hand using a combination of rigid supports and
elastic wrapping straps as shown in Fig. 3a. Therefore,
the shoulder ball-socket joint, elbow, and forearm are fully
assisted, whereas the shoulder girdle is indirectly driven via
translation of the glenohumeral joint.

Each of the 14 active DOFs are powered by series elastic
actuators (SEA) with dedicated proportional-derivative (PD)
torque controllers that allow for implementation of various
force and impedance-based therapeutic modes with precise
and stable force control [16].

A baseline control ensures dynamic transparency for the
user. The system’s dynamics is compensated with a feed-
forward torque calculated based on the dynamic model of
the system implemented using a recursive Newton–Euler
method with spatial dynamics representation [25]. Another
component of the baseline behavior is an assistance torque
to help achieve the proper shoulder coordination. Abnormal
coordination within the shoulder is often a symptom ob-
served in stroke victims and movements performed with no
regard to this coordination can cause pain, impingement, or
injuries to the shoulder. Using a known relation between the
angles of the shoulder girdle and the humerus that describes
the shoulder coordination in the unaffected population, an
impedance controller can be used to induce the correct angles
in the shoulder girdle [16].

Other control structures might be added to the baseline
control to implement assistive or resistive forces for thera-
peutic training. The impedance controller represented in (1)
was implemented to provide robotic assistance or resistance
along a predefined trajectory in joint space.

τtask = K(θref − θ) +Dθ̇ (1)

Where K and D are the emulated spring stiffness and
damping coefficients.

Even though each actuator can measure torque, the effort
applied by the human wearer cannot be distinguished from
other unmodeled effects, but it can be estimated as shown in
the following subsection.

B. Assessment of voluntary effort

The dynamics of the coupled human-robot system might
be represented by the Euler-Lagrange equations of motion
(2).

M(θ)θ̈ + C(θ, θ̇)θ̇ + F θ̇ +G(θ) = τ (2)

Torque is measured in each individual joint of the robot,
and is a result of a combination of forces generated by



multiple sources, including actuation from the controller τu
and external forces τext.

τ = τu + τext

The torque actuation generated by the controller can be
broken down into three components, as shown in (3).

τu = τcomp + τshoulder + τtask (3)

Where τshoulder refers to the torque assistance to help
achieve the proper shoulder coordination, τtask represents
the torque generated by the impedance controller to drive
the robot in a predefined trajectory, and τcomp refers to the
torque generated by the dynamics compensation algorithm.
Because rehabilitation exercises are usually slow, causing the
effect of all other dynamic terms to be insignificant compared
to that of gravity [26], and also since the SEA with its torque
controller acts like a torque source decoupling the effect of
the reflected inertia of the motor rotor [27] further reducing
the inertia forces, we herein assume that the inertial, Coriolis,
and centrifugal effects are negligible. Therefore

τcomp = F̂ θ̇ + Ĝ(θ)

With F̂ and Ĝ(θ) representing the friction and gravity
matrices, respectively.

Here, we consider that the external torques can be broken
down into three components, as shown in (4).

τext = τres + τpass + τact (4)

where τres represents the residual torque due to unmod-
eled dynamics and τact represents the active torques due
to voluntary muscle activity generated by the wearer. The
component τpass reflects the summed effects of passive
neuromuscular properties and forces related to involuntary
muscle activity [22], mostly caused by exaggerated stretch
reflexes and increased muscle tone due to arm mobilization,
and abnormal neural activity often observed in individuals
with sensorimotor impairments like stroke. Typically, these
factors present high inter- and intra-individual variability
and depend on many different physical and psychological
conditions, making it impossible to model the dynamic
behavior of the torque generated by these passive effects.

The external torques can be obtained by subtracting the
control actuation τu from the measured torque τ . Consider
τe = τres + τpass; therefore, τact can be calculated if τe is
known.

Passive exercises are a routine part of rehabilitation prac-
tice, which can be delivered with robotic assistance. Consider
a wearer being passively mobilized along a specific trajectory
with robotic assistance, i.e. we assume that τact = 0;
therefore, τe = τext = τ − τu. If the wearer is then asked
to voluntarily apply forces along the same trajectory, the
kinematic constraints applied in both cases will be similar,
such that τe will be maintained, but τact 6= 0.

In order to find τact, we train an artificial neural network
(ANN) (see subsection II-D) to estimate the torques

τ̂e(θ̇, θ) = τ̂res(θ̇, θ) + τ̂pass(θ̇, θ) (5)

such that τ̂act = τext − τ̂e.

C. Experimental protocol

To validate the proposed method, we designed an ex-
periment consisting of a one DOF movement performed
with several levels of active human effort. Muscle activity
was measured and used as a ground-truth comparison. The
subject was asked to perform elbow flexion and extension
while all of the other joints were locked in the configuration
shown in Fig. 3a. The desired movement speed was the
same across all levels, and was defined by a metronome with
auditory and visual feedback indicating directional changes
and the desired speed. The movement was repeated ten times
in each level.

To control for the level of voluntary effort applied by
the wearer, the type of robotic guidance, the impedance
controller gains, and the instructions given to the subject
were modified to gradually increase the amount of expected
voluntary muscle activity, such that the effort would be
minimal in the first level and maximal in the last level.
Fig. 2 illustrates the levels of expected voluntary effort with
the combination of parameters chosen in each level. Level 0
represents the passive mobilization adopted in rehabilitation
practice, in which we assume that τact = 0. Two sets of
movements in this level were performed and data from one
of these sets was used to train the ANN.

One healthy individual performed the experiment with the
right arm only. An sEMG data acquisition system (Delsys
Inc., Trigno Wireless EMG) was used to measure muscle
activity in the biceps brachii and in the long and lateral
heads of triceps brachii. In the analysis, we observed that the
lateral head of triceps brachii exhibited patterns that looked
like a combination of both the biceps brachii and the long
head of triceps brachii activity, which might be caused by
sEMG cross-talk due to sensor misplacements. Therefore,
the data analysis did not include the lateral head of triceps
brachii. Fig. 3 illustrates the experiment setup. The sampling
frequency of the sEMG data was 1kHz, and signals were
filtered by a fifth-order low-pass Butterworth filter at 5 Hz
and normalized to the maximal voluntary contraction (MVC).

Position and torque data from the robot (right arm only)
were sampled at 100 Hz and post-processed with a fifth-order
moving median filter to remove spikes. Synchronization
between the robot data and sEMG data was ensured in the
post-process using a spike velocity signal generated by a fast
elbow flexion prior to every test.

D. Artificial Neural Network architecture

We used a feed-forward ANN composed of one hidden
layer with 15 neurons with the hyperbolic tangent sigmoid
transfer function to estimate the function represented in (5),
which represents the summed effects of unmodeled dynam-
ics, passive neuromuscular properties and forces associated
with involuntary muscle activity. To train the ANN, we used
the Levenberg-Marquardt algorithm with the experimental



Fig. 2: Levels of expected effort applied by wearer. The combination of parameters in each level is described in the boxes, such that ‘R’ refers to the
type of robotic guidance in the elbow joint (assistance: controller attempts to follow a sinusoidal trajectory given by θ(t) = −42sin(2πvt) where the
zero position corresponds to 90◦ elbow flexion; resistance: controller attempts to hold the joint at the zero position), ‘I’ refers to the system impedance
emulated by the controller in the elbow joint (controller gains for high impedance: K = 1, D = 0.25; low impedance: K = 0.1, D = 0.01), and ‘U’
refers to the instructions given to the user.

(a) Subject position. (b) Sensor placement.

Fig. 3: Experiment setup. The subject is attached to the Harmony exoskele-
ton through the upper-arm and hand, locked in position with just the elbow
moving in a flexion-extension motion. sEMG sensors were placed in the
biceps and triceps (long and lateral heads) brachii.

data from level 0, where the target output was given by the
recorded values of τext and the input consisted of the joints
positions and velocities vectors stacked together, resulting
in a 14-dimensional vector. The ANN output represents the
estimate of the 7-dimensional vector τ̂e.

III. RESULTS

In order to verify consistency of the ANN output, the
subject performed two different sets of repetitions in level
0 (no active effort), where we assumed that τact = 0. One
of the collected datasets was used in the ANN training and
the other was used for validation. The inputs of the validation
dataset were fed to the trained ANN and the generated output
was compared with the training target output. The results are
shown in Fig. 4. Since the elbow is the only moving joint
during the experiments, the inputs and outputs only for the
elbow joint are represented.

We used the estimation τ̂e to calculate the active torque
τ̂act at a given time. For the elbow joint, positive and neg-
ative values of τ̂act represent extension and flexion torques,
respectively. To compare between the estimated active torque
and the recorded muscle activity, τ̂act was normalized with
respect to the maximum torque recorded throughout the
seven levels of the experiment. Fig. 5 shows the computed
values of τ̂e, τ̂act, and τext, as well as a comparison between
the normalized τ̂act and the muscle activity of biceps and
triceps brachii normalized to the MVC across the seven levels
of the experiment. The correlation coefficients between these
parameters for each level was calculated with the Pearson
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Fig. 4: Validation of the ANN (elbow joint). Time lines are zoomed-in
showing only 8 out of ten repetitions performed. sEMG depicted represent
values normalized according to the MVC.

correlation, and are shown in Table I. Positive values of τ̂act
were compared with muscle activity in triceps, and negative
values were compared with biceps.

TABLE I
CORRELATION COEFFICIENTS

τ̂act VS. MUSCLE ACTIVITY (NORMALIZED)

Level Flexion Extension
L0 -0.03 -0.09
L1 0.74 0.58
L2 0.19 0.61
L3 0.68 0.75
L4 0.30 0.34
L5 0.73 0.83
L6 0.73 0.80

To test the sensibility of the estimated active torque to
different levels of voluntary effort, we created a metric called
Normalized Integrated Effort (NIE), which can be interpreted
as the normalized power exerted within a specific time
window, and is calculated using (6), where y represents the
effort parameter and tw represents the time window length.

NIE =

∫ tw
0
|y|dt

tw ×max(y)
(6)
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Fig. 5: Results obtained for the elbow joint. Computed values of τ̂e,
τ̂act, and τext are presented in the first two rows. Comparison between
normalized τ̂act and muscle activity in flexion and extension for each level
is presented in the third row. Negative values of τ̂act represent flexion
torques, and muscle activity in biceps brachii is inverted for comparison
purposes only. Recorded positions and velocities are presented in the last
two rows.

The NIE varies between 0 and 1, such that 0 represents no
effort over the entire time and 1 represents maximal effort
over the entire time. Fig. 6 shows the NIE calculated for
the seven levels using the biceps and triceps muscle activity,
and the estimated active torque split into flexion (negative
values) and extension (positive values). The total NIE value
is given by the summed quantities of flexion/biceps and
extension/triceps.
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Fig. 6: Normalized integrated effort obtained for each level of the experiment
using muscle activity and estimated active torques as parameters. The NIE
was calculated separately for flexion and extension, and the total value is
given by the summed values.

IV. DISCUSSION

We trained an ANN to estimate τ̂e that represents the
summed effects of passive neuromuscular properties and
forces associated with involuntary muscle activity combined
with unmodeled dynamic effects. The assumption that τact =
0 in level 0 was confirmed by the muscle activity recorded
shown in Fig. 4, where small variations in the biceps ac-
tivity can be attributed to motion artefacts due to relative
movement between the electrode and muscle. The output
generated for the validation input data consistently tracked
the target output, as shown in Fig. 4.

To obtain the active torque τ̂act representing the voluntary
effort we used the estimation τ̂e combined with τext. Because
of the simplicity of the motion performed, one may argue
that τ̂act and τext are likely to exhibit a high correlation.
In Fig. 5, the comparison between the active and external
torques shows that this is in fact true in levels 5 and 6, when
the active torques applied by the wearer are much larger
than torques generated by residual dynamics and passive
and involuntary characteristics. However, this correlation
decreases as the active torque applied is reduced, as shown
in Fig. 5, emphasizing the need for the proposed method to
identify a wide range of effort levels.

It is not expected that the estimated active torque will
track the measured muscle activity, because muscle moment-
arms vary with joint angle, causing the relationship between
muscle contraction and joint torque to be nonlinear [28].
However, it is still expected that they will be correlated, and
the coefficients shown in Table I indicate high correlations
for all levels but levels 0 and flexion phase of level 2. In Fig.
5 we can observe that, τ̂act exhibits multiple peaks in level 0,
which are likely the cause for the observed low correlation
coefficient. These peaks could be due to multiple reasons.
First, it might be related with noise produced by the ANN
when the velocity is close to zero, which is likely to happen
in all levels, but it is more noticeable in level 0. Another
possible cause is the residual inertial effects not compensated
in the robot’s baseline control. These effects are negligible
when the movement velocity is low, but they become sig-
nificant during directional shifts. Because acceleration was
not used as an input parameter, these effects might not be
captured by the ANN estimation of τ̂e. Therefore, they are
encapsulated in τ̂act, and in cases where the active effort is
negligible, like in level 0 and flexion phase of level 2, the
difference with respect to muscle activity will become more
pronounced.

A metric called NIE was introduced to verify the relia-
bility and sensibility of τ̂act to different levels of voluntary
effort. The experiment performed was designed such that the
total voluntary effort required is expected to monotonically
increase from level 0 to level 6. This increase in partially
confirmed by the NIE calculated with muscle activity, de-
picted in Fig. 6, but there is an unexpected decrease in
level 4, both in flexion and extension phases. This might
be caused by a difference in effort input associated with
variations in movement speed between the robotic assistance



Fig. 7: Pearson correlation between different levels for velocity and active
torque curves.

and human volitional motion. Movement speed executed by
the robot during assisted movements is constant over time,
and if the robot moves in a speed slightly lower than the
human voluntary motion, the robot will apply a resistive
force and the wearer will exert a higher effort to follow the
trajectory. When assistance is removed, which is the case
in level 4, the wearer will apply less effort to complete the
movement, but will most likely exhibit a different velocity
profile. This effect can be observed in Fig. 5, where the
amplitude of the muscle activity of both biceps and triceps
decreases overall in level 4 compared with level 3, and
the velocity profile changes significantly. Nevertheless, the
NIE values calculated with the estimated active torque still
closely matches the values calculated with muscle activity.
We can observe an increasing difference between the NIEs
in levels 5 and 6. This might be related with significant
differences in position and velocity profiles in levels 4, 5,
and particularly in level 6, when compared with the other
levels, as shown in Fig. 5. Furthermore, inertia effects might
be encapsulated in the estimation, and these two factors
together likely contribute to a biased estimation of τ̂act,
which explains the observed differences in the NIE values.

In order to verify the differences in sensitivity of velocity
and active torque to different human contributions to the
assisted movement, we calculated pair-wise Pearson corre-
lations for the velocity and active torque between the levels
for all possible combinations. Note that we only included the
levels where the robot was assisting the wearer to complete
the motion, which consists of levels zero through three, as
detailed in Fig. 2. These correlations are depicted in Fig.
7. The depicted correlations for velocity curves are close to
one in all cases, whereas the correlations for active torque are
lower than 0.5 in all cases. This emphasizes that kinematic
measures such as velocity are not suitable to represent human
contributions to assisted movements. On the other hand,
the results presented suggest that τ̂act has the potential to
represent human effort in individual joints during robot-aided
training, because it produces results consistent with effort
associated with muscle activity and it is also sensitive to
different levels of effort.

The proposed method can be further expanded to include
other joints in analysis of complex multi-joint movements.
Even though the estimated torques might not be directly
associated with anatomical joints because not all the links
of Harmony are rigidly attached to the human arm, the

estimation can still indicate torque patterns and couplings
that can be useful in the analysis of movement quality of
individuals with sensorimotor impairments.

V. CONCLUSION

In this paper, we proposed a method for assessment of
voluntary effort applied by the wearer using the Harmony
exoskeleton. An ANN was used to estimate the torques
generated by unmodeled robot dynamics and by the summed
effects of passive neuromuscular properties and involuntary
forces, which were used to calculate the active torque applied
by the human. The estimation was consistent with the
efforts associated with muscle activity, and it reliably tracked
variable levels of effort.

Limitations of this study include the restricted range of
kinematic conditions of the training data and the lack of
acceleration data to estimate τ̂e. The training data was
captured in a single kinematic condition, and estimation for
movements that exhibit large deviations from this condition,
either in position or velocity profiles, will most likely have
significant biases. Further development and testing is needed
to examine the suitability of this method when the movement
being assessed is practiced with no robotic assistance. In
future works we plan to record training data in a broad
spectrum of conditions with different velocity profiles to
allow a wider range of movement variations. Although this
might represent an overhead time when applying the method
as an assessment tool for rehabilitation, the process to capture
training data consists of a passive mobilization intervention,
which is already a routine practice used to optimize joint
position and to regain soft tissue length, and might bring
extra benefits to the wearer associated with wider joint ROM
[29]. Regarding the lack of acceleration data in the estimation
of τ̂e, this limits the ability of the ANN to include residual
inertial effects in the estimation, especially when the position
and velocity profiles of the input data differ from the training
profiles. Consequently these effects get encapsulated in the
active torque, and is particularly concerning when no or little
effort is being applied. Acceleration was not included in this
study because reliable measurements are not available in our
case so far. Modifications in the ANN can be made to attempt
to overcome this issue, and will be explored in future studies.

The proposed experiment has little chance of confounding
factors due to its simplicity, and the results show that the
proposed method has great potential to provide a good
estimation of voluntary effort generated by a person wearing
the Harmony exoskeleton. This estimation can potentially
capture human contributions to the movement that are not
perceived via kinematic metrics. Also, the method might
be expanded to include other joints in analysis of complex
multi-joint movements, where the estimated effort might be
used to unravel joint patterns and compensations in individu-
als with sensorimotor impairments, and can potentially serve
as a high resolution assessment metric to monitor progress
of movement quality throughout the treatment.
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