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Abstract— Much effort has been placed into the develop-
ment of robotic devices to support, rehabilitate, and interact
with humans. Despite these advances, reliably modeling the
neuromuscular changes in human motion resulting from a
robotic intervention remains difficult. This paper proposes a
method to uncover the relationship between robotic intervention
and human response by combining surface electromyography
(sEMG), the musculoskeletal modeling platform OpenSim, and
artificial neural networks (ANNs). To demonstrate the method,
a one degree of freedom (DOF) elbow flexion-extension motion
is performed and analyzed. Preliminary results show that while
the robot provides assistance to the subject, it also appears to
produce other unexpected responses in the movement. Further
investigation using the new method reveals the neuromuscular
effect of an unintended resistance to the subject’s motion ap-
plied by the robot as it enforces a speed slower than the subject
selects. The characterization of the differences in expected and
actual interaction is enabled by the method presented in this
paper. Thus, the method uncovers previously obscured aspects
of human robot interaction, and creates possibilities for new
training modalities.

I. INTRODUCTION

Robots for physical rehabilitation are designed to work
closely with humans, and are in fact meant to affect delib-
erate and controlled change in the movement produced by
the subject. Harmony, a bimanual upper-limb exoskeleton
robot (Fig. 1) is one such device [1]. Since Harmony is
attached directly to the limbs of the subject, control of the
robot and safety during movement is of utmost importance.
A combination of careful mechanical design and impedance
control affords the robot a level of compliance which can
be varied for individualized movements or rehabilitation
protocols.

Several robotic interventions have been developed towards
the goal of individualized therapy. Typically, interventions
vary along a spectrum going from active high impedance
assistance, through no intervention, to high impedance re-
sistance [2, 3] as conceptualized in Fig. 2. The levels of
assistance and resistance provided to the subject are both
zero at the neutral mode and increase as the axis moves
off to the left or right of this mode respectively. Ideally,
impedance control can be used to smoothly vary the robotic
intervention applied to the subject along this axis. A common
method used to analyze the effects of such training is to mea-
sure muscle activations through surface Electromyography
(sEMG). Unfortunately, the use of impedance control results
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in loss of information regarding the ‘true motion’ that the
subject is being trained for. This refers to the hypothetical
motion that the subject would perform with the same muscle
activations in the absence of active robotic intervention.
This information is vital toward understanding the effects of
intervention, and could aid in the design of more effective
training protocols.

De Oliveira et al. [4] present a way to modulate Harmony’s
impedance to alter the human effort required to perform
a motion. They show that it is indeed difficult to separate
the dynamics of human movement and that of the robotic
intervention. The authors propose a method to exploit the re-
lationship between effort and measured muscle activation to
fill this information gap. However, they find low correlations
between the estimated voluntary effort and the measured
sEMG data in cases where the robot applied assistance to
the subject. This is accompanied by unexpected performance
of the sEMG data. Specifically, even when Harmony assists
the motion, the muscle activations are found to be higher
than when the robot is passive. These results motivate an in-
depth analysis of the relationship between the applied robotic
intervention, the measured sEMG, and the kinematics of the
motion.

Models relating measured kinematics and sEMG data have
been suggested in the literature [5–9]. However, complex
relationships exist between the muscle force, the musculoten-
don architecture and joint geometry which makes it difficult
for sEMG to capture the true neural activations which
produce the given motion [10]. Further, the results from
these methods are often convoluted by the noise introduced
by skin artifacts [11]. Thus, there is a need to use a more
reliable structure that exploits the information provided by
sEMG data while also adhering to the underlying dynamics
of the musculoskeletal system. Pang et al. [12] proposed a
method that came close to solving the problem, but relied on
complex mathematical models that require prior knowledge
about muscle parameters such as contraction velocity and
muscle length, making it difficult to reproduce. Inspired by a

Fig. 1: Harmony: a bimanual, upper-limb exoskeleton used to analyze the
effects of robotic intervention on human motion.
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Fig. 2: Conceptualization of the Intervention axis: The level of assistance provided by the robot (in blue) and the level of resistance (in red). At the left
end, the level of assistance is high and it reduces to zero as it reaches the neutral mode. To the right of this mode, the assistance remains zero while the
level of resistance applied increases from zero to the maximum. High impedance: K = 1; D = 0.25; low impedance: K = 0.1; D = 0.01.

structure suggested by Sartori et al. [7], this paper proposes a
method to tackle all of these issues. Experimental sEMG data
is used in conjunction with computational modeling using
OpenSim, which allows for a more comprehensive analysis
of neural activations and the corresponding ‘true motion’.

Motivated by the anomalous results shown by De Oliveira
et al [4], the main aim of the current study is to analyze
the effect of robotic interventions on muscle activations and
the intended motion of the subject. Specifically, the study
aims to answer the questions, what is the true effect of the
intervention applied by the robot, and more importantly, does
the impedance controller result in unintended effects on the
subject’s motion? These questions are answered using the
method depicted in Fig. 3.

II. METHOD

The method used in this study can be split into two
parts (Fig. 3). First, the experimental mode where the robot
remains passive is considered to be the baseline. The po-
sition data collected during this mode is used to generate
the muscle activations predicted by OpenSim’s Computed
Muscle Control tool. Assuming these are the true muscle
activations, a neural network is trained to fit the relationship
between these activations and the measured sEMG data.
The second half of the method uses this neural network to
estimate the OpenSim muscle activations using the measured
sEMG data from the remaining robot intervention modes.
These activations are then used to simulate the ‘true motion’
hypothetically performed by the subject, thus closing the
information gap. The data processing and artificial neural
network training are done using Matlab R2018a (MathWorks
Co. USA). OpenSim version 3.3 is used for the muscle
activation estimation and forward dynamics simulation. All
of the analysis presented is carried out on a Laptop computer
(core i5, 2.3 GHz Quad core processor, 8GB RAM).
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Fig. 3: Flow chart representing the method: Fig. 3a shows the steps taken
to generate the ANNs. Fig. 3b shows the next steps taken to simulate the
motion in OpenSim.

A. Experimental Protocol

A one DOF elbow flexion-extension movement is designed
to analyze the effect of varying the impedance controller
used with Harmony. The movement is repeated nine times
for five distinct levels of robot intervention. The five levels
are High impedance robot Assistance (HA), Low impedance
robot Assistance (LA), Gravity Assistance only (GA), Low
impedance robot Resistance (LR), and High impedance robot
Resistance (HR). The GA mode allows the subject to move
freely without the weight of the robot and the remaining
robot interventions are layered over this mode. The five levels
of assistance and resistance, and the corresponding high
and low impedance values are described on the conceptual
intervention axis in Fig. 2. In all trials the subject is instructed
to complete the motion and a metronome is used along with
visual cues to control movement speed. The trajectory of
the arm is predefined for the robot in the active intervention
modes. This is identical to the protocol implemented by De
Oliveira et al. [4].

Data has been collected for one healthy individual per-
forming the motion with the right arm only. An sEMG data
acquisition system (Delsys Inc., Trigno Wireless EMG) is
used to measure muscle activity in the biceps brachii and in
the long and lateral heads of triceps brachii. Fig. 4 illustrates
the experimental setup. The sEMG signals have been filtered
by a fifth-order low-pass Butterworth filter at 5 Hz and
normalized by the maximal voluntary contraction. Position
and torque data from the robot have been sampled at 100
Hz and smoothed using a fifth-order moving median filter.
Synchronization between the robot data and the sEMG data
is ensured in the post-processing by matching a spike signal
generated by an abrupt elbow flexion at the start of each trial.
The time matched movement is further averaged over the
repetitions to generate the average movement of the subject
during each robot intervention trial. This movement is then
scaled, beginning at full extension of the elbow (0% of the
motion) running till full flexion (at about 50% of the motion),
and then returning to full extension (100% of the motion).
This can be visualized in terms of the elbow angle in Fig. 5.

B. The OpenSim Model

The single joint elbow flexion-extension movement per-
formed by the subject requires the use of two main muscle
groups, namely, the Biceps and the Triceps. The simplified
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Fig. 4: Experimental setup: The subject performed the elbow flexion
motion with the right arm only. The sEMG sensor placement is shown
in 4a for the biceps brachii, and the triceps brachii long head and short
head. The placement of the subject’s arm in the robot is shown in 4b.

upper-extremity OpenSim model Arm26 [17] is ideal to
analyze the movement as it models these same muscle
groups, which were also measured experimentally using
sEMG sensors. Since the model (shown in Fig. 5b) only
includes 6 muscles it is computationally inexpensive. The 6
muscles are the Triceps Long Head (TLH), Triceps Lateral
(TLa), Triceps Medial Head (TMH), Biceps Long Head
(BLH), Biceps Short Head (BSH), and the Brachialis (BRA).
The plots presented in this paper are representative of the
BLH data, but the same analysis has been repeated for all
6 muscles. Prior to performing the analysis, the model is
scaled to the upper arm and forearm lengths of the subject.

C. Computed Muscle Control

OpenSim’s Computed Muscle Control (CMC) tool derives
the generalized coordinates (in this case, muscle activations)
of a dynamic musculoskeletal model for a desired kinematic
trajectory. This is done using a combination of proportional-
derivative control and static optimization [18, 19]. The GA
robot intervention data is treated as the baseline for the
motions performed by the subject while wearing Harmony
as the other interventions are layered over this mode of robot
operation. The averaged position data collected during this
trial is used to generate a motion file to animate the Arm26
model in OpenSim. This motion is then used with the CMC
tool to generate the muscle activations required to perform
the prescribed motion. The resulting six muscle activations
are set up as the target outputs for two neural networks.

D. Artificial Neural Network Design

Two curve fitting Artificial Neural Networks (ANNs) have
been designed respectively to take Biceps and Triceps sEMG
data as input, pass it through one hidden layer, containing 30
nodes, and produce three outputs each. The number of nodes
is heuristically chosen to find the best model while avoiding
over-fitting of data. The Levenberg-Marquardt algorithm is
used due to its high computational speed [20]. The outputs
are chosen to be the desired muscle activations corresponding
to the muscle group for convenience. However, the choice of
inputs is not as straightforward.
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Fig. 5: Measurements and Model: Fig. 5a shows the average elbow joint
angle trajectory (standard deviation shaded) for the GA condition. Fig. 5b
shows the Arm26 model. θ is the elbow joint angle. 0◦ refers to the fully
extended position.

Evidence suggests that a 50 ms - 150 ms delay exists be-
tween the collected sEMG data and the movement performed
by the subject [21]. Also, muscle activations are known to
depend upon the time history of this activation. Thus, the
relationship between measured sEMG activations and muscle
activations is not linear [22]. This delay is accounted for
within OpenSim as well. The input at a given time instance
is expected to be dependent on 150 ms of information before
that instant which corresponded to about 750 data points
(depending on the duration of the entire motion). To reduce
computation time while maintaining this dependence on
activation history, the 751 data points (including the current
time instance) have been down-sampled to 16 fixed data
points. These 16 points are selected to reduce discrepancies.
Thus, at a given time instance, for a given muscle group, 16
data points are passed as an input, and three data points are
expected as the network’s output.

Further, to separate the training and validation data sets,
only five of the repetitions of the GA robot intervention trial
are averaged and scaled to generate the inputs for the training
set. The position data for the same trials is used as an input
to OpenSim’s CMC tool. This training set is used to train two
ANNs for the Biceps and Triceps muscle groups respectively.
The remaining four repetitions are averaged to generate the
validation sEMG data set, which is then fed to the ANNs to
estimate the corresponding muscle activations for OpenSim.
These are then compared to the validation target muscle
activations generated by OpenSim’s CMC tool.

E. Forward Dynamics

OpenSim’s Forward Dynamics tool uses muscle activa-
tions as control inputs to simulate the corresponding motion.
This motion is the solution (integration) of the differential
equations that define the dynamics of the musculoskeletal
model [18, 19]. The measured sEMG data is passed through
the trained ANNs to estimate the OpenSim muscle acti-
vations corresponding to the remaining robot intervention
modes. These activations are then used with the Forward
Dynamics tool to simulate the subject’s motion. As OpenSim
does not take into account the robot’s intervention, the result-
ing motion is different from the actual movement performed
by the subject. Thus, the Forward Dynamics tool allows
for the unique opportunity to compare the subject’s ‘true



Fig. 6: Averaged Biceps sEMG data: The first five figures show the data for all five robot intervention averaged over nine repetitions, with the standard
deviation shaded around the mean. The last plot in the bottom row compares the means for all five modes.

movement’, and the movement performed as a result of the
robot intervention.

III. RESULTS

A. sEMG Comparison

The filtered and scaled sEMG data is compared for the
five robot interventions (Biceps activations are shown in
Fig. 6). As the motion performed in the first half of the
trial is flexion, the flexor muscles (or Biceps) are expect
to activate [23]. Conversely, during the extension half of
the motion, the extensor muscles (Triceps) are expected
to activate. As expected in the resistance conditions (LR,
HR), the sEMG activations are higher than those in the GA
condition. Further, the maximum sEMG activations increased
from the LR to HR robot intervention trials. However, it was
also observed that in both assistive conditions (LA, HA), the
resulting sEMG activation was not lower than that in the
GA mode, which was contrary to the intended effect of the
intervention. In fact, during certain phases of the movement,
the sEMG activation was higher in the assistance modes
than in the GA mode. Investigation of the Biceps sEMG
profile shows that the subject appears to be activating their
muscles unexpectedly during the motion. To further analyze
this anomaly, ANNs were trained and used to study the
resulting simulated motion in OpenSim.

B. ANN validation

The OpenSim CMC muscle activations and ANN esti-
mated actuations are compared in Fig. 7. These are the results
from the validation set of four repetitions of the GA mode
not used for training. The figure compares the estimates
for three trained networks with 0, 15 and 20 data points
of time history information passed as input to the network.
At 15 time history points, the resulting trained network is
able to generate reliable muscle actuations to be fed to the
OpenSim Forward Dynamics tool. The averaged and scaled
sEMG data for all the five robot intervention trials are then
fed to the ANNs. The resulting muscle activations for the
cases of interest (HA, LA and GA) can be seen in Fig.
8a. The estimated OpenSim muscle activations for the five

robot intervention trials follow the same trend as the sEMG
activations.

C. Motion Analysis

These muscle activations are used with OpenSim’s For-
ward Dynamics tool to simulate the corresponding motion.
The estimated elbow joint angles are shown in Fig. 8b.

IV. DISCUSSION

The measured sEMG muscle activations are compared to
understand the overall effects of the robot’s intervention.
The activations (Fig. 6) increase going from the GA mode
to the LR to the HR modes as expected. This relates to
the increasingly higher levels of resistance provided by the
robot. However, the peak sEMG activations are higher in
the LA and HA modes than the GA mode, even though
the robot is nominally providing assistance to the subject.
This result is intriguing as it corresponded well with the
study performed by De Oliveria et al. [4]. The anomalous
behaviour is believed to the result of unintended effects of
the robot’s intervention, which are further analyzed for the
HA and LA modes.

Two ANNs are trained using the measured sEMG data
and OpenSim CMC muscle activations for the GA mode
(which is common to all five modes of the robot). The
ANNs transform the measured muscle activations to the cor-
responding values estimated by OpenSim, with the ultimate
goal of simulating the hypothetical motion that the subject is
training for. As muscle activation is known to depend upon
the time history of activation, the neural network inputs are
designed to exploit this dependence. The resulting network
is validated using trials of the GA intervention that are
not used to generate the training dataset. Fig. 7 shows that
passing time history information to the ANN significantly
improved the prediction. Further, as the number of historical
data points was increased beyond 15, over-fitting is observed.
The performance of the ANN is improved by over 99% with
the updated inputs than without the time history information.

The averaged and scaled sEMG data for the assistance
modes is then run through these trained ANNs to generate
the OpenSim muscle activation patterns (Fig. 8a). Next, these
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Fig. 7: Validation of the ANN (BLH): Comparison of the OpenSim
CMC generated muscle activations (Target output) and the estimated muscle
activations obtained as outputs of three ANN models for the Biceps Long
Head muscle.

estimated muscle activations are used with OpenSim’s For-
ward Dynamics tool to simulate the corresponding motion.
The joint angles representing these motions, shown in Fig.
8b, do not follow the same pattern as the motion performed
in the GA mode. Further, the simulated movement does not
reach the same flexion angle in the HA and LA cases as in
the GA case. This suggests that the unexpected high peaks
seen in the measured sEMG data do not correspond to a
more exaggerated simulated motion (higher flexion angle),
but to a different motion trajectory altogether. Fig. 8b shows
this trajectory to consists of two joint angle peaks (instead
of one) in the HA and LA cases, providing some insight into
the anomaly.

During the flexion phase of the motion, the subject is
moving against gravity. The subject tries to move faster than
the prescribed motion in order to compensate for the effect
of gravity, and is thus restricted by the speed prescribed to
the robot. The subject experiences a resulting unintended
resistance applied by the robot, and the flexor muscles show
a corresponding peak in activation. This corresponds to the
first peak seen in Fig. 8b.

As the subject lowers (or extends) their arm, corresponding
to the neutral (90◦) position in the GA case, a second
peak is observed. At this position, gravity is aiding the
downward motion of the arm, and the subject is expected
to first flex so as to slow down the movement to match
the metronome, and then only extend the arm. However,
the flexor muscles are seen to deactivate more abruptly
than expected in the measured activations. Interestingly, the
muscle activation increase occurring just before the second
peak in the simulated motion is not as high as that before
the first peak. The increase from the GA mode is also lower
in the HA case than the LA case. This trend can also be
explained by an unintended effect of the robot’s intervention.
Since the robot does not allow the subject to move faster
than prescribed, the subject now experiences support against
gravity. As a result, the flexor muscle activations die off faster
in the assistance cases than in the GA case. Depending on
the aim of the training protocol, the resistance that causes
the two peaks in the subject’s simulated motion may or may
not be desired. This resistance could potentially be chosen
deliberately for a desired training effect.
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Fig. 8: Analysis of HA and LA modes (BLH): Fig. 8a compares the muscle
activations for the HA, LA and GA cases estimated from the corresponding
sEMG data using the ANN. Fig. 8b shows the resulting motion generated
using OpenSim’s Forward Dynamics tool.

The ANNs trained in this paper are successful in trans-
forming the measured sEMG data to the corresponding
OpenSim muscle activations. This is valuable because these
muscle activations can then be used to simulate the motion
that the same muscle activations would result in given the
hypothetical scenario where the robot does not apply an
intervention. The simulated position data for the HA and
LA cases allow for unique insight into the hypothetical
movement that the subject is being trained for. The robot
enforces the prescribed trajectory with the exact prescribed
time signature, and as a result the subject experiences resis-
tance even in the assistance modes. This observation further
suggests that had the controller not resisted the subject in
performing the motion at a speed faster than what was
prescribed, the muscles would not have activated as much.

The class of controllers that use impedance control to
supervise such interventions are called Assist-As-Needed
(AAN) controllers. The results seen in this paper show
that while the AAN controller used for the experiments
performed as expected in the resistance modes, the same
was not true in the assistance modes. This strongly supports
the need to design such controllers with more care and with
an emphasis on avoiding unintentional responses to interven-
tion. For example, the minimal AAN controller proposed by
Pehlivan et al. [24] allowed for unimpeded motion ahead of
the reference trajectory. Any controller design must further
be evaluated before being used in training, as this could help
avoid detrimental effects, as well as allow for selection of
specific training results.



Although this type of evaluation is difficult to perform in
real time, the presented method enables this analysis offline.
The method may be reproduced for any motion that can be
reliably modeled and simulated using a software platform
such as OpenSim. Thus, assuming that the estimated muscle
activations and the corresponding simulated motions are
representative of the true neural muscle activations and joint
kinematics, the combination of OpenSim and trained ANN
muscle activation estimators results in a powerful tool. In
fact, this method can be used to analyze the way both healthy
and affected subjects respond to physical intervention, be it
robotic or otherwise. The results could be used to evaluate
preliminary effects of a new protocol, or analyze the trends
of the protocol on a number of subjects. This method also
does away with the need for kinematic data in cases where
such data may be noisy or hard to capture, in favor of
sEMG measurements. Further, the method described here
may be reversed to generate the training required to produce
a desired rehabilitative outcome. For example, it might be
possible to design a protocol to achieve a desired level of
muscle activation, while restricted to a small workspace.

V. CONCLUSION

The aim of this study is to present a reliable method to
establish a relationship between a subject’s response and
the applied robotic interaction. The method is demonstrated
by varying the intervention applied by Harmony along the
axis conceptualized in Fig. 2, going from high impedance
assistance to high impedance resistance. The resulting sEMG
data (Fig. 6) shows that the muscle activations do not
perform as expected. Specifically, the maximum activation
does not decrease going from the neutral to the assistance
modes. The proposed method of analysis uses trained neural
networks and the muscle activations for the assistance modes
to provide insight into the true effects of the intervention. The
results help characterize the unintended resistance applied by
the robot on the subject’s motion. Thus, the method is proven
to be a reliable tool for the analysis of the true effects of
robotic intervention on human motion. Further, the method
may be used to preemptively evaluate such interventions
as well as to develop new and more deliberate training
protocols.
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