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Abstract— Robust and dexterous manipulation is identified as
one of the critical challenges in the field of robotic hand design
and control. A key requirement of dexterous manipulation is the
ability to modulate fingertip force directions and magnitudes.
Cartesian stiffness control is a strategy to generate position
dependent fingertip forces. However the stability conditions for
the Cartesian stiffness controllers vary nonlinearly because of
dependency on the manipulator’s configuration and loading
forces. The challenge is enhanced in case of tendon-driven
robotic hands due to passive joint coupling. In this work,
we derive a generalized passivity based stability boundary for
Cartesian stiffness. We then present a methodology to analyze
the stability boundaries of Cartesian stiffness controlled series
elastic tendon-driven robotic fingers. We also present a solution
to improve stability by optimizing the arrangement of optimized
passive compliance in parallel to the actuators based on the
stability criteria. Our analysis not only allows for informed
design of new robotic hands but also applies to improving
performance of existing robotic hands.

I. INTRODUCTION

Dexterous in-hand manipulation is one of the biggest
challenges in the field of robotics. Over the past two decades,
many strategies have been implemented towards improving
object manipulation capabilities of robotic hands [1], [2].
Dexterous manipulation requires accurate control of fingertip
force magnitudes and directions. Cartesian stiffness control
is a control strategy to accurately and robustly control
forces/torques and positions of fingertips.

Cartesian stiffness control allows the generation of posi-
tion dependent fingertip forces which are considered benefi-
cial for manipulation. Stability of such controllers have been
analyzed for systems with decoupled passive joint stiffnesses
such as robotic arms [3], [4], [5]. However, compliant
tendon-driven robots have passively coupled joints due to
tendon routing constraints. As tendons route through many
joints, such robots have fully populated stiffness matrices.
Cartesian stiffness stability for such robots has not been
analyzed. Specifically, there are two factors that could make
such systems unstable: configuration dependency and loading
forces, both of which are encountered during manipulation.
Thus, it becomes important to analyze stability for such
systems to understand and improve robotic manipulation.

In our previous work [6], we presented a generalized
proof of a passivity based stability criteria for compliant
tendon-driven multi-degree of freedom (DOF) robotic fingers
implementing joint stiffness controllers. In this work, we
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extend our stability criteria to Cartesian stiffness controllers.
Through analysis and simulations, we show that due to the
configuration dependency of such controllers, a controller
stiffness that might be stable in one area of the workspace
might be unstable in another. We further show that addition
of external forces adds another facet to Cartesian stability,
due to a configuration dependent force based joint stiffness
known as conservative congruency transformation (CCT)[7].

We present a solution to improve manipulation perfor-
mance and stability by utilizing the mechanical arrangements
of passive compliance. While researchers have worked on
improving manipulation capabilities of robotic hands by dif-
ferent means such as sensors, kinematics and controllers [1],
[2], we are more interested in exploiting the arrangements
of passive compliance in tendon-driven hands to provide
intrinsic stability to augment controllers. Towards that goal,
we identified compliance arranged in parallel to actuators
(parallel compliance) as a useful design parameter in our
previous work [8], [9] which can be optimized to improve
stability. We present a method to choose an optimal set of
constant stiffness springs in parallel to the actuators at the
joints that mitigate the instability due to configuration and
external forces. Addition of the springs also improves the
overall workspace utilization and stability of robotic fingers
intrinsically by virtue of mechanical design.

II. STABILITY BOUNDS OF CARTESIAN STIFFNESS
CONTROL

In our previous work [6] we analyzed the stability bound-
aries of joint stiffness control for series-elastic tendon-driven
robotic hands with coupled (fully populated) passive joint
stiffness which can mathematically be represented as,

Kj,passive = RTKscR+Kpc (1)

where R is the transformation matrix from joint space to
tendon space also known as the moment arm matrix defining
the tendon routing strategy. Ksc is the diagonal matrix of
tendon stiffness and Kpc is the parallel compliance at the
joints.

We showed that for a generalized multi-DOF series elastic
tendon driven system with fixed passive joint stiffness and a
constant joint stiffness controller gain (Kj,d), the passivity
boundaries can be expressed as,

Kj,passive −Kj,d ≥ 0 (2)
Kj,d > Kpc (3)

In other words, to maintain passivity, the maximum allowable
joint controller gain (controller joint stiffness) has to be



bounded by the net passive stiffness of the system. If the
series elastic springs have constant stiffness and the routing
pulleys are circular, the joint stiffness stability bounds are
invariant of robot configuration or constant over the entire
workspace.

Cartesian stiffness controllers are fundamentally differ-
ent from joint space controllers primarily because of the
configuration dependency of controller torques. To have a
better understanding of stability bounds of Cartesian stiffness
control, we revisit the principle of virtual work relating
Cartesian forces to joint torques.

τ = JT(q)fx (4)

where τ is the vector of joint torques, q is the vector
of joint angles, J is the Jacobian transformation matrix
from Cartesian space to joint space and fx is the vector of
Cartesian end-tip forces.

Stiffness is defined as the rate of change of torque with
respect to joint angle. Differentiating the above equation with
respect to joint angle yields,

Kj = JT(q)KxJ(q) +
δJT(q)

δq
fx (5)

where the first term is the transformation of Cartesian end-
tip stiffness (Kx) to joint space stiffness (Kj) invariant of
external forces. The second term is a configuration dependent
external force based stiffness term (CCT). We will address
this stiffness term as Kj,CCT for simplicity.

When no external forces are acting on the system, the
transformation can be rewritten as,

Kj = JT(q)KxJ(q) (6)

Thus, the joint stiffness of a system can be expressed in
Cartesian space as

Kx = J−T(q)KjJ
−1(q) (7)

Multiplying both equations of the joint stiffness stability
criteria (Eq.(2) and (3)) by J−T(q)(...)J−1(q) on both sides,

J−T(q)Kj,passiveJ
−1(q)− J−T(q)Kj,dJ

−1(q) ≥ 0 (8)

J−T(q)Kj,dJ
−1(q) > J−T(q)KpcJ

−1(q) (9)

Using Eq. (7), the joint stiffness criteria can be trans-
formed to Cartesian stiffness control stability bounds,

Kx,passive(q)−Kx,d > 0 (10)

Kx,d ≥ J−T(q)KpcJ
−1(q) (11)

where Kx,passive is the net passive Cartesian stiffness of
the system. As the joint stiffness stability criteria accounts
for fully populated passive stiffness matrices, it can thus
be reliably used to derive the Cartesian stiffness stability
criteria,

For systems with external forces acting on the finger-tip,
the passive stiffness can be rewritten as,

Kx,passive(q) = J−T(q)(Kj,passive −Kj,CCT)J
−1(q)

(12)
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Fig. 1. (a) A 2-DOF tendon-driven planar robotic finger with tendon
stiffness of ksc on all tendons [6]. Two motors (M1 and M2) actuate the
two DOFs using a belt-drive (2N) strategy. The tendons for the second
joint route through an idler pulley on the first joint, resulting in compliant
coupling between both joints. (b) Experimental equivalent 2-DOF testbed
for validating the system analysis. The experimental system follows the
same routing strategy as the simulation system

The criteria dictates that the maximum achievable controller
stiffness is always bounded by the passive stiffness of the
system to maintain actuator passivity. As the passive stiffness
matrix is fully populated, the inequality is treated as a
test of positive definiteness rather than an element-wise
subtraction. We see that when constant passive joint stiffness
is transformed to Cartesian space, it is a nonlinear function
of both configuration and external forces thus making the
stability bounds to vary at different points in the workspace.

III. ANALYZING STABLE CARTESIAN WORKSPACE

We are interested in understanding the effects of config-
uration and force dependency on stability boundaries. Thus,
we performed an analysis on stability over the Cartesian
workspace for fixed controller stiffness values. The analysis
was performed for both unloaded and loaded systems.

A. Cartesian Stiffness Control

The stability bounds presented are generalized and hence
can be applied to any series elastic tendon-driven robot.
However for this study, we model a planar 2-DOF robotic
finger with a modified 2N (N is the DOFs) tendon routing in
the form of a belt drive and series springs of equal stiffness
on the joints (Fig. 1).

To generate Cartesian end-tip stiffness (Kx,d) with its
resting position at (xd), the controller can be designed as,

τd = JT (θ)(Kx,d(xd − x)) (13)

Now that a desired joint torque (τd) has been estimated,
the tendon level controller has to calculate the actuator
displacement (θd) required to generate the desired torque.



The tendon forces can be estimated by

ft = Ksc(Rmθ −Rq) (14)

where Rm is the diagonal matrix of motor pulley radii and
(θ) is the vector of motor angles.

Forces can be generated using series compliance by creat-
ing appropriate displacements by the actuator. Without loss
of generality, we can assume that the motor has a closed-
loop, tuned position controller implemented which makes its
response equal to a first order system which can be modeled
as,

θ̇ =
1

tr
(θd − θ) (15)

where, θd is the desired motor position and tr is the rise
time of the first order response.

Thus using, Eq. (13), (14) and (15), the required motor
displacement for generating controller torques can be calcu-
lated.

B. Stable Workspace of Unloaded Fingers

We begin by assuming no external forces acting on the
finger. We chose a feasible rectangular area of the overall
finger workspace (dashed-line region) and then picked nine
points within that workspace to denote an example manip-
ulation task workspace (Fig. 2). Three decoupled (diagonal)
controller stiffnesses were picked to emulate various manip-
ulation task scenarios. The first case is high stiffness in x-
direction and low in y-direction. The second is high stiffness
in y-direction and low in x-direction. Finally we chose equal
controller stiffness in both directions. The first two controller
stiffnesses are for tasks where accuracy (high stiffness) is
required in one direction while robustness against external
impacts (low stiffness) is required in the other. Isotropic
stiffness case is where only accuracy is required in both
directions.

The numerical values of maximum controller stiffness
values (gains) were chosen based on the Eigen values of
the passive stiffness matrix of the finger at the center of the
9 points (middle row of middle column) assuming it to be
the nominal configuration of the finger.

To further explain the cause of instability we overlaid the
passive and controller stiffness ellipses on top of each other.
We also performed step response simulations within three of
the nine points to validate our analysis. Step response analy-
sis was chosen as it can be considered one representation of
environmental interactions and more reliable and repeatable
than external impacts.

At different joint configurations, it is noticeable that a
constant value of controller stiffness is not stable everywhere
in the workspace. The shape of the stable workspace also
changes with different values of controller gains (stiffness).
This is because the passive stiffness rotates and scales due
to the configuration dependency and causes the controller
stiffness to go out of passive bounds leading to a poor
utilization of the overall workspace. While Fig. 2(c) utilized
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Fig. 2. Stable workspace for fixed Cartesian controller stiffness for a
2DOF planar tendon driven robotic finger. Overall workspace under scrutiny
is shown in dotted lines. Shaded regions depict the stable regions while
white regions are unstable. Stiffness ellipses for the passive stiffness (blue)
and controller stiffness (red) are overlaid. Three cases are shown: (a).
High stiffness in x and low stiffness in y, (c). High stiffness in y and
low stiffness in x and (e). Equal stiffness in x and y. The ellipses show
that instability is caused by controller stiffness crossing the bounds of
passive stiffness. A general reduction in overall workspace is observed.
Corresponding simulation of steps are shown within the coordinates of the
middle column of the ellipses in each plot shown in (b), (d) and (f).

∼ 40% of the overall workspace, Fig. 2(a) and 2(e) were
able to utilize only ∼ 37% and ∼ 34% respectively.

We performed step response analysis of our system with
similar masses, inertias and stiffnesses as our experimental
platform while keeping the damping low.

While the results apply to step responses in every direc-
tion, for the scope of this work, we move in y-direction
steps of Cartesian coordinates within the middle column of
our selected nine points. The steps start from the nominal
position (middle row of middle column), move to an extreme,
return back to nominal and move to the other extreme.
Fig. 2(b), Fig. 2(d) and Fig. 2(f) clearly exhibit the instability



at different regions in the workspace.
Manipulating objects leads to loading reaction forces as a

result of grip forces generated by the fingertips. Such forces
lead to the effects of CCT on the stiffness transformations
and hence modify the stability boundaries. As the object is
moved around and grip forces are changed, the magnitude
and angle of such loading forces will change as well leading
to further non-linearities.

C. Stable Workspace of Loaded Fingers

We carry out analysis in the presence of external loading
forces. From the previous section, we pick the isotropic
stiffness case as it is the worst case scenario in terms of
workspace utilization and applied a constant force of 1.5N
at the fingertip at three different angles (−30◦, 0◦ and 30◦).
The angles were chosen based on an estimation of the stable
grasp friction cone constraints [10].

We performed similar analysis and simulation as the previ-
ous section (Fig. 3). Analysis shows that stability boundaries
are indeed modified by loading force magnitudes, directions
and finger configurations. While stable workspace area in-
creased for forces at 0◦ (∼ 48%) and −30◦ (∼ 63%) from the
unloaded 34%, there was a decrease in the stable workspace
for force acting at 30◦ (26%). For simulations, the controller
was modified to include a feed-forward term to compensate
for the external forces to maintain the same position in the
workspace. The modified controller is expressed as

τd = JT(q)(Kx,d(xd − x)− fext) (16)

Simulations show that the presence of external loading
forces play a big role in the performance and stability of
Cartesian stiffness control. Certain directions of forces may
seem beneficial to the stability due to the forces assisting
the controller and thus reducing controller forces. However
external loading forces during manipulation are dynamic and
change with object states hence making it non-trivial to
utilize them for stability.

Our interest lies in the effect of mechanical design el-
ements such as various arrangements of compliance on
controller stability. In some of our previous work [8], [9],
we identified parallel compliance (PC) as a design element
that can be optimized to improve stability while enjoying all
the benefits of a compliant transmission.

IV. OPTIMIZING PARALLEL COMPLIANCE FOR
IMPROVING STABILITY

While increasing series stiffness would increase stability
boundaries, it would also lead to a reduction in actuator
decoupling and unwanted high passive stiffness in Cartesian
directions reducing the overall robustness of the robot. We
present a solution to improve stability by adding passive
parallel compliance at the joints while maintaining the ben-
efits of a compliant transmission. We optimized the stiffness
of a constant diagonal (joint-wise independent) PC term in
Eq. (1) to satisfy the stability criteria (Eq. (10)) with the
transformations (Eq. (1) and (12)) for all points in our task
workspace (nine points).

-0.05 0 0.05

X position (m)

0

0.05

0.1

0.15

Y
 p

o
si

ti
o

n
 (

m
)

(a) 1.5N Force at −30◦

0 2 4 6 8 10

Time (sec)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
ar

te
si

an
 p

o
si

ti
o
n
s 

(m
)

X

Xdes

Y

Ydes

(b)

-0.05 0 0.05

X position (m)

0

0.05

0.1

0.15

Y
 p

o
si

ti
o

n
 (

m
)

(c) 1.5N Force at 0◦
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Fig. 3. Effect of constant load forces on the stable workspace of
Cartesian controllers with isometric stiffness. Shaded regions represent the
stable workspace for 1.5N loading force acting at the fingertip at three
angles:−30◦ (a) and (b), 0◦ (c) and (d) and 30◦ (e) and (f). Step response
was analyzed for three out of the nine points in the middle column. A force
at a positive angle decreases stability while a force at a negative angle assists
the controller and hence seems more stable.

Our optimization criteria is as follows,

minimize
∑

(diag(Kpc))
2

subject to Re(λi) > ε, i = 1, . . . , n.
(17)

where λi is the vector of Eigenvalues of the stability con-
dition (Eq. 10) and ε is a very small positive real number
which can be treated as a safety factor. As the inequality
is a test of positive definiteness, we want to choose PC
stiffness such that the real part of the Eigenvalues of the
stability condition are always positive for every point (i) in
our desired workspace (n). We minimized the stiffness of the
PC element. Note that high values of PC stiffness leads to
increased actuator effort and might lead to actuator saturation
reducing performance.

For the unloaded finger, we chose the worst case scenario
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Fig. 4. Effect of addition of optimized parallel compliance for loaded and
unloaded fingers with isometric Cartesian stiffness. The unloaded finger (a)
and (b) show an increase in stable workspace and comparatively stable step
response. The loaded finger (c) and (d) also show improvements in stable
workspace and step response.

(isometric stiffness) for optimizing PC stiffness. For sim-
ulations, the controller (Eq. (13)) was modified by adding
a feedforward term to compensate for the additional joint
torque due to the parallel compliance.

τd = JT (q)(Kx,d(xd − x)− fext) +Kpc(q− q0)
(18)

where q0 is the resting angle of the PC spring.
Analysis and simulations with the optimized PC element

added to the system (Fig. 4(a)) showed an increase in stable
workspace (∼ 67%) and an overall improvement in step
response(Fig. 4(b).

Similarly, we chose the worst case for the loaded finger
(1.5N at 30◦). Analysis with the optimized PC element
(Fig. 4(c)) showed an improvement in stable workspace
(∼ 84%) and a highly stable step response(Fig. 4(d)).

Hence, it is clear that parallel compliance can be added
to improve the stability of robotic fingers running Cartesian
stiffness controllers.

V. EXPERIMENTAL VALIDATION

In order to experimentally validate our analysis and sim-
ulations, we designed a planar 2-DOF, 2N tendon driven
robotic finger (Fig. 1(b)).

A. Experimental setup

The robotic finger testbed was designed using laser cut
acrylic to keep the weights and inertias as low as possible.

Bearings were utilized to minimize the effects of damp-
ing/friction. High strength fishing line was used for tendons
to avoid tendon stretch. Series springs with a stiffness of
718 N/m were attached to each tendon which were then
connected to two brushed DC gearmotors (Maxon motors)
in a belt drive arrangement. The motors were controlled by
Maxon EPOS motor controllers which were setup for closed
loop position control tuned to behave like first order systems
with a rise time of 0.044 seconds. Two high resolution rotary
encoders (US Digital) were used to estimate joint angles.
The higher level Cartesian stiffness controller was written
in Labview (National Instruments) and was executed on an
FPGA controller (NI Compact RIO). Motor pulleys were 57
mm in diameter and joint pulleys were all 34 mm in diameter.
The finger was loaded by hanging weights using a pulley
attached sufficiently far such that the angle of the load was
within ±5◦ of the target of ±30◦.

B. Experimental Results

Step response experiments similar to the simulations used
in previous sections were performed with the isometric
stiffness equal to that used in the analysis (35 N/m in
x and y). The numerical values of controller gains were
calculated using the Eigenvalues of the passive stiffness
matrix of the finger at the nominal position (middle row
of middle column). Experiments were performed for both
loaded and unloaded cases with and without PC springs.
Torsional PC was achieved by using two linear springs of
equal stiffness (kpc) and attaching them to the joint pulley
and grounding them on the ground for joint 1 and on joint
1 for joint 2 respectively. The effective stiffness due to such
an arrangement (Kpc,eff ) can be calculated as,

Kpc,eff = 2 ∗ r2j ∗ kpc (19)

where rj is the radius of the joint pulley.
Experimental results (Fig. 5) show that the real system

is generally more stable than the simulated system. This is
primarily because of unmodeled friction and stiction in the
experimental system which dissipates energy and thus makes
the system seem more stable.

For the unloaded finger (Fig. 5(a)), results show that the
system is less stable when moved to the unstable regions
according to the analysis. Optimizing parallel compliance
led to us using 40 N/m springs at the first joint and 60 N/m
springs at the second. Just as we predicted, the addition of
parallel compliance improves the performance of the finger
greatly (Fig. 5(b)).

For the loaded finger, we hung a weight of 150 g from a
string tied to the finger tip to generate a force of ∼ 1.5
N at an angle of 30◦ and the response was stable but
similar to our predictions (Fig. 5(c)). Addition of parallel
compliance led to a very stable response without loss in
performance (Fig. 5(d)). Optimization gave us springs of
stiffness 240 N/m at the first joint and 60 N/m at the second
joint.



0 1 2 3 4

Time (sec)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
ar

te
si

an
 p

o
si

ti
o
n
 (

m
)

X

Xdes

Y

Ydes

(a)

0 1 2 3 4

Time (sec)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
ar

te
si

an
 p

o
si

ti
o
n
 (

m
)

X

Xdes

Y

Ydes

(b)

0 1 2 3 4

Time (sec)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
ar

te
si

an
 p

o
si

ti
o
n
 (

m
)

X

Xdes

Y

Ydes

(c)

0 1 2 3 4

Time (sec)

-0.1

-0.05

0

0.05

0.1

0.15

0.2
C

ar
te

si
an

 p
o
si

ti
o
n
 (

m
)

X

Xdes

Y

Ydes

(d)

Fig. 5. Experimental step response results. (a) and (c) show response of
the unloaded and loaded system respectively without parallel compliance.
Addition of parallel compliance leads to improvement in both loaded ( (b))
and unloaded ( (d)) cases.

VI. CONCLUSIONS

In this work, we derived a generalized conservative sta-
bility criteria for multi-DOF tendon-driven robotic hands
implementing Cartesian stiffness control. A major contri-
bution of this work is that unlike previous research which
only considered robots with decoupled passive joint stiffness,
our analysis also applies to robots with coupled passive
joint stiffness such as tendon-driven robots. These stability
bounds apply to robots with any number of DOFs and any
type of tendon routing strategies. By workspace analysis
we showed that a constant controller stiffness may not be
stable everywhere in the workspace due to the dependency
of such controllers on robot configuration. This leads to a
poor utilization of the available workspace unless very low
controller stiffnesses are chosen. Further we showed that
loading forces make the stability boundaries highly nonlinear.
As object manipulation requires accurate force magnitude
and direction control, such nonlinearities are detrimental to
dexterity. Using the derived stability bounds, we developed
a method to choose an optimal set of constant stiffness
parallel compliance to increase the stable workspace and
improve performance for both loaded and unloaded fingers.
We then experimentally validated our analysis using a robotic
testbed. Addition of parallel compliance greatly improved
the performance of Cartesian stiffness control with minimum
changes to the original controller. Such methods can be used
to design robotic hands that are intrinsically stable by virtue
of design.

While we chose to optimize parallel compliance, other me-

chanical design parameters can be optimized such as routing
pulley radii and link lengths for intrinsic stability. Also, for
existing robots which cannot be physically modified, similar
analysis can be used to find the controller stiffness that
will lead to stability for a given task workspace essentially
making our work applicable to both new and existing robotic
hands.

The derived stability boundaries do not consider the effects
of dynamic parameters such as mass, inertia and damping
which have pronounced effects on stability and thus should
be considered as conservative. Designers should consider
these stability boundaries as the minimum satisfiable con-
ditions and keep in mind that the real-world systems have
unmodeled dynamic features which may lead to modified
(usually larger) boundaries compared to theoretical analysis.

Finally, our method focuses on identifying the optimal
value of parallel springs with constant stiffness. But this
approach may not be optimal in terms of energy consumption
as the actuator has to work more to compensate for the
torques due to parallel compliance. Future work would
include optimizing for non-linear parallel compliance which
are a function of joint angles so that we can minimize the
overall passive stiffness of the robot at every configuration.
Another strategy can be to optimize the resting lengths of
the parallel compliance to activate only when required for
ensuring stability.
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